Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=42701281−3225029,x2=42701281+3225029
Alternative Form
x1≈−0.033283,x2≈0.633283
Evaluate
(5x−3)(4x×7)×61=180
Remove the parentheses
(5x−3)×4x×7×61=180
Multiply the terms
More Steps

Evaluate
(5x−3)×4x×7×61
Multiply the terms
More Steps

Evaluate
4×7×61
Multiply the terms
28×61
Multiply the numbers
1708
(5x−3)×1708x
Multiply the terms
1708x(5x−3)
1708x(5x−3)=180
Expand the expression
More Steps

Evaluate
1708x(5x−3)
Apply the distributive property
1708x×5x−1708x×3
Multiply the terms
More Steps

Evaluate
1708x×5x
Multiply the numbers
8540x×x
Multiply the terms
8540x2
8540x2−1708x×3
Multiply the numbers
8540x2−5124x
8540x2−5124x=180
Move the expression to the left side
8540x2−5124x−180=0
Substitute a=8540,b=−5124 and c=−180 into the quadratic formula x=2a−b±b2−4ac
x=2×85405124±(−5124)2−4×8540(−180)
Simplify the expression
x=170805124±(−5124)2−4×8540(−180)
Simplify the expression
More Steps

Evaluate
(−5124)2−4×8540(−180)
Multiply
More Steps

Multiply the terms
4×8540(−180)
Rewrite the expression
−4×8540×180
Multiply the terms
−6148800
(−5124)2−(−6148800)
Rewrite the expression
51242−(−6148800)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
51242+6148800
x=170805124±51242+6148800
Simplify the radical expression
More Steps

Evaluate
51242+6148800
Add the numbers
32404176
Write the expression as a product where the root of one of the factors can be evaluated
144×225029
Write the number in exponential form with the base of 12
122×225029
The root of a product is equal to the product of the roots of each factor
122×225029
Reduce the index of the radical and exponent with 2
12225029
x=170805124±12225029
Separate the equation into 2 possible cases
x=170805124+12225029x=170805124−12225029
Simplify the expression
More Steps

Evaluate
x=170805124+12225029
Divide the terms
More Steps

Evaluate
170805124+12225029
Rewrite the expression
170804(1281+3225029)
Cancel out the common factor 4
42701281+3225029
x=42701281+3225029
x=42701281+3225029x=170805124−12225029
Simplify the expression
More Steps

Evaluate
x=170805124−12225029
Divide the terms
More Steps

Evaluate
170805124−12225029
Rewrite the expression
170804(1281−3225029)
Cancel out the common factor 4
42701281−3225029
x=42701281−3225029
x=42701281+3225029x=42701281−3225029
Solution
x1=42701281−3225029,x2=42701281+3225029
Alternative Form
x1≈−0.033283,x2≈0.633283
Show Solution
