Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=1055−16805,x2=1055+16805
Alternative Form
x1≈−7.46341,x2≈18.46341
Evaluate
(5x−6)×2−65x−652=25−5x2
Multiply the terms
2(5x−6)−65x−652=25−5x2
Swap the sides
25−5x2=2(5x−6)−65x−652
Expand the expression
More Steps

Evaluate
2(5x−6)−65x−652
Multiply the terms
More Steps

Evaluate
2(5x−6)
Apply the distributive property
2×5x−2×6
Multiply the numbers
10x−2×6
Multiply the numbers
10x−12
10x−12−65x−652
Subtract the terms
More Steps

Evaluate
10x−65x
Collect like terms by calculating the sum or difference of their coefficients
(10−65)x
Subtract the numbers
−55x
−55x−12−652
Subtract the numbers
−55x−664
25−5x2=−55x−664
Move the expression to the left side
689−5x2+55x=0
Rewrite in standard form
−5x2+55x+689=0
Multiply both sides
5x2−55x−689=0
Substitute a=5,b=−55 and c=−689 into the quadratic formula x=2a−b±b2−4ac
x=2×555±(−55)2−4×5(−689)
Simplify the expression
x=1055±(−55)2−4×5(−689)
Simplify the expression
More Steps

Evaluate
(−55)2−4×5(−689)
Multiply
More Steps

Multiply the terms
4×5(−689)
Rewrite the expression
−4×5×689
Multiply the terms
−13780
(−55)2−(−13780)
Rewrite the expression
552−(−13780)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
552+13780
Evaluate the power
3025+13780
Add the numbers
16805
x=1055±16805
Separate the equation into 2 possible cases
x=1055+16805x=1055−16805
Solution
x1=1055−16805,x2=1055+16805
Alternative Form
x1≈−7.46341,x2≈18.46341
Show Solution
