Question
Solve the quadratic equation
Solve using the quadratic formula
Solve by completing the square
Solve using the PQ formula
x1=2016−481,x2=2016+481
Alternative Form
x1≈−0.296586,x2≈1.896586
Evaluate
(5x−8)(4x×8)=90
Remove the parentheses
(5x−8)×4x×8=90
Multiply the terms
More Steps

Evaluate
(5x−8)×4x×8
Multiply the terms
(5x−8)×32x
Multiply the terms
32x(5x−8)
32x(5x−8)=90
Expand the expression
More Steps

Evaluate
32x(5x−8)
Apply the distributive property
32x×5x−32x×8
Multiply the terms
More Steps

Evaluate
32x×5x
Multiply the numbers
160x×x
Multiply the terms
160x2
160x2−32x×8
Multiply the numbers
160x2−256x
160x2−256x=90
Move the expression to the left side
160x2−256x−90=0
Substitute a=160,b=−256 and c=−90 into the quadratic formula x=2a−b±b2−4ac
x=2×160256±(−256)2−4×160(−90)
Simplify the expression
x=320256±(−256)2−4×160(−90)
Simplify the expression
More Steps

Evaluate
(−256)2−4×160(−90)
Multiply
More Steps

Multiply the terms
4×160(−90)
Rewrite the expression
−4×160×90
Multiply the terms
−57600
(−256)2−(−57600)
Rewrite the expression
2562−(−57600)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2562+57600
Rewrite the expression
65536+57600
Add the numbers
123136
x=320256±123136
Simplify the radical expression
More Steps

Evaluate
123136
Write the expression as a product where the root of one of the factors can be evaluated
256×481
Write the number in exponential form with the base of 16
162×481
The root of a product is equal to the product of the roots of each factor
162×481
Reduce the index of the radical and exponent with 2
16481
x=320256±16481
Separate the equation into 2 possible cases
x=320256+16481x=320256−16481
Simplify the expression
More Steps

Evaluate
x=320256+16481
Divide the terms
More Steps

Evaluate
320256+16481
Rewrite the expression
32016(16+481)
Cancel out the common factor 16
2016+481
x=2016+481
x=2016+481x=320256−16481
Simplify the expression
More Steps

Evaluate
x=320256−16481
Divide the terms
More Steps

Evaluate
320256−16481
Rewrite the expression
32016(16−481)
Cancel out the common factor 16
2016−481
x=2016−481
x=2016+481x=2016−481
Solution
x1=2016−481,x2=2016+481
Alternative Form
x1≈−0.296586,x2≈1.896586
Show Solution
