Question
Simplify the expression
−120b3ca2+48b3c2a+60b4ca−24b4c2
Evaluate
(6a−3b)(−4b3c)(5a−2c)
Multiply the first two terms
−4b3c(6a−3b)(5a−2c)
Multiply the terms
More Steps

Evaluate
−4b3c(6a−3b)
Apply the distributive property
−4b3c×6a−(−4b3c×3b)
Multiply the numbers
−24b3ca−(−4b3c×3b)
Multiply the terms
More Steps

Evaluate
−4b3c×3b
Multiply the numbers
−12b3cb
Multiply the terms
−12b4c
−24b3ca−(−12b4c)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−24b3ca+12b4c
(−24b3ca+12b4c)(5a−2c)
Apply the distributive property
−24b3ca×5a−(−24b3ca×2c)+12b4c×5a−12b4c×2c
Multiply the terms
More Steps

Evaluate
−24b3ca×5a
Multiply the numbers
−120b3ca×a
Multiply the terms
−120b3ca2
−120b3ca2−(−24b3ca×2c)+12b4c×5a−12b4c×2c
Multiply the terms
More Steps

Evaluate
−24b3ca×2c
Multiply the numbers
−48b3cac
Multiply the terms
−48b3c2a
−120b3ca2−(−48b3c2a)+12b4c×5a−12b4c×2c
Multiply the numbers
−120b3ca2−(−48b3c2a)+60b4ca−12b4c×2c
Multiply the terms
More Steps

Evaluate
12b4c×2c
Multiply the numbers
24b4c×c
Multiply the terms
24b4c2
−120b3ca2−(−48b3c2a)+60b4ca−24b4c2
Solution
−120b3ca2+48b3c2a+60b4ca−24b4c2
Show Solution

Factor the expression
−12b3c(2a−b)(5a−2c)
Evaluate
(6a−3b)(−4b3c)(5a−2c)
Multiply the first two terms
−4b3c(6a−3b)(5a−2c)
Factor the expression
−4b3c×3(2a−b)(5a−2c)
Solution
−12b3c(2a−b)(5a−2c)
Show Solution
