Question
Simplify the expression
216k3−36k2y−36k2x+6kxy−36zk2+6zky+6zxk−zxy
Evaluate
(6k−z)(6k−x)(6k−y)
Multiply the terms
More Steps

Evaluate
(6k−z)(6k−x)
Apply the distributive property
6k×6k−6kx−z×6k−(−zx)
Multiply the terms
More Steps

Evaluate
6k×6k
Multiply the numbers
36k×k
Multiply the terms
36k2
36k2−6kx−z×6k−(−zx)
Multiply the numbers
36k2−6kx−6zk−(−zx)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
36k2−6kx−6zk+zx
(36k2−6kx−6zk+zx)(6k−y)
Apply the distributive property
36k2×6k−36k2y−6kx×6k−(−6kxy)−6zk×6k−(−6zky)+zx×6k−zxy
Multiply the terms
More Steps

Evaluate
36k2×6k
Multiply the numbers
216k2×k
Multiply the terms
More Steps

Evaluate
k2×k
Use the product rule an×am=an+m to simplify the expression
k2+1
Add the numbers
k3
216k3
216k3−36k2y−6kx×6k−(−6kxy)−6zk×6k−(−6zky)+zx×6k−zxy
Multiply the terms
More Steps

Evaluate
−6kx×6k
Multiply the numbers
−36kxk
Multiply the terms
−36k2x
216k3−36k2y−36k2x−(−6kxy)−6zk×6k−(−6zky)+zx×6k−zxy
Multiply the terms
More Steps

Evaluate
−6zk×6k
Multiply the numbers
−36zk×k
Multiply the terms
−36zk2
216k3−36k2y−36k2x−(−6kxy)−36zk2−(−6zky)+zx×6k−zxy
Use the commutative property to reorder the terms
216k3−36k2y−36k2x−(−6kxy)−36zk2−(−6zky)+6zxk−zxy
Solution
216k3−36k2y−36k2x+6kxy−36zk2+6zky+6zxk−zxy
Show Solution
