Question
Find the excluded values
b=5
Evaluate
b−57b2−26b−53
To find the excluded values,set the denominators equal to 0
b−5=0
Move the constant to the right-hand side and change its sign
b=0+5
Solution
b=5
Show Solution

Divide the polynomials
7b+9+b−5−8
Evaluate
b−57b2−26b−53
Solution
7b+9+b−5−8
Show Solution

Find the roots
b1=713−615,b2=713+615
Alternative Form
b1≈−1.462557,b2≈5.176843
Evaluate
b−57b2−26b−53
To find the roots of the expression,set the expression equal to 0
b−57b2−26b−53=0
Find the domain
More Steps

Evaluate
b−5=0
Move the constant to the right side
b=0+5
Removing 0 doesn't change the value,so remove it from the expression
b=5
b−57b2−26b−53=0,b=5
Calculate
b−57b2−26b−53=0
Cross multiply
7b2−26b−53=(b−5)×0
Simplify the equation
7b2−26b−53=0
Substitute a=7,b=−26 and c=−53 into the quadratic formula b=2a−b±b2−4ac
b=2×726±(−26)2−4×7(−53)
Simplify the expression
b=1426±(−26)2−4×7(−53)
Simplify the expression
More Steps

Evaluate
(−26)2−4×7(−53)
Multiply
More Steps

Multiply the terms
4×7(−53)
Rewrite the expression
−4×7×53
Multiply the terms
−1484
(−26)2−(−1484)
Rewrite the expression
262−(−1484)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
262+1484
Evaluate the power
676+1484
Add the numbers
2160
b=1426±2160
Simplify the radical expression
More Steps

Evaluate
2160
Write the expression as a product where the root of one of the factors can be evaluated
144×15
Write the number in exponential form with the base of 12
122×15
The root of a product is equal to the product of the roots of each factor
122×15
Reduce the index of the radical and exponent with 2
1215
b=1426±1215
Separate the equation into 2 possible cases
b=1426+1215b=1426−1215
Simplify the expression
More Steps

Evaluate
b=1426+1215
Divide the terms
More Steps

Evaluate
1426+1215
Rewrite the expression
142(13+615)
Cancel out the common factor 2
713+615
b=713+615
b=713+615b=1426−1215
Simplify the expression
More Steps

Evaluate
b=1426−1215
Divide the terms
More Steps

Evaluate
1426−1215
Rewrite the expression
142(13−615)
Cancel out the common factor 2
713−615
b=713−615
b=713+615b=713−615
Check if the solution is in the defined range
b=713+615b=713−615,b=5
Find the intersection of the solution and the defined range
b=713+615b=713−615
Solution
b1=713−615,b2=713+615
Alternative Form
b1≈−1.462557,b2≈5.176843
Show Solution
