Question
Simplify the expression
−49r3−7r2+51r+14
Evaluate
(7r2−r−7)(−7r−2)
Apply the distributive property
7r2(−7r)−7r2×2−r(−7r)−(−r×2)−7(−7r)−(−7×2)
Multiply the terms
More Steps

Evaluate
7r2(−7r)
Multiply the numbers
More Steps

Evaluate
7(−7)
Multiplying or dividing an odd number of negative terms equals a negative
−7×7
Multiply the numbers
−49
−49r2×r
Multiply the terms
More Steps

Evaluate
r2×r
Use the product rule an×am=an+m to simplify the expression
r2+1
Add the numbers
r3
−49r3
−49r3−7r2×2−r(−7r)−(−r×2)−7(−7r)−(−7×2)
Multiply the numbers
−49r3−14r2−r(−7r)−(−r×2)−7(−7r)−(−7×2)
Multiply the terms
More Steps

Evaluate
−r(−7r)
Multiply the numbers
7r×r
Multiply the terms
7r2
−49r3−14r2+7r2−(−r×2)−7(−7r)−(−7×2)
Use the commutative property to reorder the terms
−49r3−14r2+7r2−(−2r)−7(−7r)−(−7×2)
Multiply the numbers
More Steps

Evaluate
−7(−7)
Multiplying or dividing an even number of negative terms equals a positive
7×7
Multiply the numbers
49
−49r3−14r2+7r2−(−2r)+49r−(−7×2)
Multiply the numbers
−49r3−14r2+7r2−(−2r)+49r−(−14)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−49r3−14r2+7r2+2r+49r+14
Add the terms
More Steps

Evaluate
−14r2+7r2
Collect like terms by calculating the sum or difference of their coefficients
(−14+7)r2
Add the numbers
−7r2
−49r3−7r2+2r+49r+14
Solution
More Steps

Evaluate
2r+49r
Collect like terms by calculating the sum or difference of their coefficients
(2+49)r
Add the numbers
51r
−49r3−7r2+51r+14
Show Solution

Find the roots
r1=141−197,r2=−72,r3=141+197
Alternative Form
r1≈−0.931119,r2=−0.2˙85714˙,r3≈1.073976
Evaluate
(7r2−r−7)(−7r−2)
To find the roots of the expression,set the expression equal to 0
(7r2−r−7)(−7r−2)=0
Separate the equation into 2 possible cases
7r2−r−7=0−7r−2=0
Solve the equation
More Steps

Evaluate
7r2−r−7=0
Substitute a=7,b=−1 and c=−7 into the quadratic formula r=2a−b±b2−4ac
r=2×71±(−1)2−4×7(−7)
Simplify the expression
r=141±(−1)2−4×7(−7)
Simplify the expression
More Steps

Evaluate
(−1)2−4×7(−7)
Evaluate the power
1−4×7(−7)
Multiply
1−(−196)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
1+196
Add the numbers
197
r=141±197
Separate the equation into 2 possible cases
r=141+197r=141−197
r=141+197r=141−197−7r−2=0
Solve the equation
More Steps

Evaluate
−7r−2=0
Move the constant to the right-hand side and change its sign
−7r=0+2
Removing 0 doesn't change the value,so remove it from the expression
−7r=2
Change the signs on both sides of the equation
7r=−2
Divide both sides
77r=7−2
Divide the numbers
r=7−2
Use b−a=−ba=−ba to rewrite the fraction
r=−72
r=141+197r=141−197r=−72
Solution
r1=141−197,r2=−72,r3=141+197
Alternative Form
r1≈−0.931119,r2=−0.2˙85714˙,r3≈1.073976
Show Solution
