Question
Simplify the expression
49w6−35w5
Evaluate
7w5(7w−5)
Apply the distributive property
7w5×7w−7w5×5
Multiply the terms
More Steps

Evaluate
7w5×7w
Multiply the numbers
49w5×w
Multiply the terms
More Steps

Evaluate
w5×w
Use the product rule an×am=an+m to simplify the expression
w5+1
Add the numbers
w6
49w6
49w6−7w5×5
Solution
49w6−35w5
Show Solution

Find the roots
w1=0,w2=75
Alternative Form
w1=0,w2=0.7˙14285˙
Evaluate
(7w5)(7w−5)
To find the roots of the expression,set the expression equal to 0
(7w5)(7w−5)=0
Multiply the terms
7w5(7w−5)=0
Elimination the left coefficient
w5(7w−5)=0
Separate the equation into 2 possible cases
w5=07w−5=0
The only way a power can be 0 is when the base equals 0
w=07w−5=0
Solve the equation
More Steps

Evaluate
7w−5=0
Move the constant to the right-hand side and change its sign
7w=0+5
Removing 0 doesn't change the value,so remove it from the expression
7w=5
Divide both sides
77w=75
Divide the numbers
w=75
w=0w=75
Solution
w1=0,w2=75
Alternative Form
w1=0,w2=0.7˙14285˙
Show Solution
