Question
Simplify the expression
70x7−280x6−630x5
Evaluate
7x2(2x3×5)(x2−4x−9)
Remove the parentheses
7x2×2x3×5(x2−4x−9)
Multiply the terms
More Steps

Evaluate
7×2×5
Multiply the terms
14×5
Multiply the numbers
70
70x2×x3(x2−4x−9)
Multiply the terms with the same base by adding their exponents
70x2+3(x2−4x−9)
Add the numbers
70x5(x2−4x−9)
Apply the distributive property
70x5×x2−70x5×4x−70x5×9
Multiply the terms
More Steps

Evaluate
x5×x2
Use the product rule an×am=an+m to simplify the expression
x5+2
Add the numbers
x7
70x7−70x5×4x−70x5×9
Multiply the terms
More Steps

Evaluate
70x5×4x
Multiply the numbers
280x5×x
Multiply the terms
More Steps

Evaluate
x5×x
Use the product rule an×am=an+m to simplify the expression
x5+1
Add the numbers
x6
280x6
70x7−280x6−70x5×9
Solution
70x7−280x6−630x5
Show Solution

Find the roots
x1=2−13,x2=0,x3=2+13
Alternative Form
x1≈−1.605551,x2=0,x3≈5.605551
Evaluate
(7x2)(2x3×5)(x2−4x−9)
To find the roots of the expression,set the expression equal to 0
(7x2)(2x3×5)(x2−4x−9)=0
Multiply the terms
7x2(2x3×5)(x2−4x−9)=0
Multiply the terms
7x2×10x3(x2−4x−9)=0
Multiply
More Steps

Multiply the terms
7x2×10x3(x2−4x−9)
Multiply the terms
70x2×x3(x2−4x−9)
Multiply the terms with the same base by adding their exponents
70x2+3(x2−4x−9)
Add the numbers
70x5(x2−4x−9)
70x5(x2−4x−9)=0
Elimination the left coefficient
x5(x2−4x−9)=0
Separate the equation into 2 possible cases
x5=0x2−4x−9=0
The only way a power can be 0 is when the base equals 0
x=0x2−4x−9=0
Solve the equation
More Steps

Evaluate
x2−4x−9=0
Substitute a=1,b=−4 and c=−9 into the quadratic formula x=2a−b±b2−4ac
x=24±(−4)2−4(−9)
Simplify the expression
More Steps

Evaluate
(−4)2−4(−9)
Multiply the numbers
(−4)2−(−36)
Rewrite the expression
42−(−36)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
42+36
Evaluate the power
16+36
Add the numbers
52
x=24±52
Simplify the radical expression
More Steps

Evaluate
52
Write the expression as a product where the root of one of the factors can be evaluated
4×13
Write the number in exponential form with the base of 2
22×13
The root of a product is equal to the product of the roots of each factor
22×13
Reduce the index of the radical and exponent with 2
213
x=24±213
Separate the equation into 2 possible cases
x=24+213x=24−213
Simplify the expression
x=2+13x=24−213
Simplify the expression
x=2+13x=2−13
x=0x=2+13x=2−13
Solution
x1=2−13,x2=0,x3=2+13
Alternative Form
x1≈−1.605551,x2=0,x3≈5.605551
Show Solution
