Question
Simplify the expression
980x2−840x+180
Evaluate
(7x−3)×4(7x−3)×5
Multiply the terms
(7x−3)×20(7x−3)
Multiply the first two terms
20(7x−3)(7x−3)
Multiply the terms
20(7x−3)2
Expand the expression
More Steps

Evaluate
(7x−3)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(7x)2−2×7x×3+32
Calculate
49x2−42x+9
20(49x2−42x+9)
Apply the distributive property
20×49x2−20×42x+20×9
Multiply the numbers
980x2−20×42x+20×9
Multiply the numbers
980x2−840x+20×9
Solution
980x2−840x+180
Show Solution

Find the roots
x=73
Alternative Form
x=0.4˙28571˙
Evaluate
(7x−3)×4(7x−3)×5
To find the roots of the expression,set the expression equal to 0
(7x−3)×4(7x−3)×5=0
Multiply the terms
More Steps

Multiply the terms
(7x−3)×4(7x−3)×5
Multiply the terms
(7x−3)×20(7x−3)
Multiply the first two terms
20(7x−3)(7x−3)
Multiply the terms
20(7x−3)2
20(7x−3)2=0
Rewrite the expression
(7x−3)2=0
The only way a power can be 0 is when the base equals 0
7x−3=0
Move the constant to the right-hand side and change its sign
7x=0+3
Removing 0 doesn't change the value,so remove it from the expression
7x=3
Divide both sides
77x=73
Solution
x=73
Alternative Form
x=0.4˙28571˙
Show Solution
