Question
Solve the quadratic equation
Solve by factoring
Solve using the quadratic formula
Solve by completing the square
Load more

a1=0,a2=756915128
Alternative Form
a1=0,a2≈1.998679
Evaluate
(8−9a)a=−40(6−3a)×63a
Multiply the terms
a(8−9a)=−40(6−3a)×63a
Multiply
More Steps

Evaluate
−40(6−3a)×63a
Multiply the terms
−2520(6−3a)a
Multiply the terms
−2520a(6−3a)
a(8−9a)=−2520a(6−3a)
Expand the expression
More Steps

Evaluate
a(8−9a)
Apply the distributive property
a×8−a×9a
Use the commutative property to reorder the terms
8a−a×9a
Multiply the terms
More Steps

Evaluate
a×9a
Use the commutative property to reorder the terms
9a×a
Multiply the terms
9a2
8a−9a2
8a−9a2=−2520a(6−3a)
Expand the expression
More Steps

Evaluate
−2520a(6−3a)
Apply the distributive property
−2520a×6−(−2520a×3a)
Multiply the numbers
−15120a−(−2520a×3a)
Multiply the terms
More Steps

Evaluate
−2520a×3a
Multiply the numbers
−7560a×a
Multiply the terms
−7560a2
−15120a−(−7560a2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−15120a+7560a2
8a−9a2=−15120a+7560a2
Move the expression to the left side
15128a−7569a2=0
Factor the expression
More Steps

Evaluate
15128a−7569a2
Rewrite the expression
a×15128−a×7569a
Factor out a from the expression
a(15128−7569a)
a(15128−7569a)=0
When the product of factors equals 0,at least one factor is 0
15128−7569a=0a=0
Solve the equation for a
More Steps

Evaluate
15128−7569a=0
Move the constant to the right-hand side and change its sign
−7569a=0−15128
Removing 0 doesn't change the value,so remove it from the expression
−7569a=−15128
Change the signs on both sides of the equation
7569a=15128
Divide both sides
75697569a=756915128
Divide the numbers
a=756915128
a=756915128a=0
Solution
a1=0,a2=756915128
Alternative Form
a1=0,a2≈1.998679
Show Solution
