Question
Simplify the expression
2x+10
Evaluate
(8x×1)×2−(7x−5)×2
Remove the parentheses
8x×1×2−(7x−5)×2
Multiply the terms
More Steps

Multiply the terms
8x×1×2
Rewrite the expression
8x×2
Multiply the terms
16x
16x−(7x−5)×2
Multiply the terms
16x−2(7x−5)
Expand the expression
More Steps

Calculate
−2(7x−5)
Apply the distributive property
−2×7x−(−2×5)
Multiply the numbers
−14x−(−2×5)
Multiply the numbers
−14x−(−10)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−14x+10
16x−14x+10
Solution
More Steps

Evaluate
16x−14x
Collect like terms by calculating the sum or difference of their coefficients
(16−14)x
Subtract the numbers
2x
2x+10
Show Solution

Factor the expression
2(x+5)
Evaluate
(8x×1)×2−(7x−5)×2
Remove the parentheses
8x×1×2−(7x−5)×2
Multiply the terms
8x×2−(7x−5)×2
Multiply the numbers
More Steps

Evaluate
8×2
Multiply the numbers
16
Evaluate
16x
16x−(7x−5)×2
Multiply the terms
16x−2(7x−5)
Simplify
More Steps

Evaluate
−2(7x−5)
Apply the distributive property
−2×7x−2(−5)
Multiply the terms
−14x−2(−5)
Multiply the terms
More Steps

Evaluate
−2(−5)
Multiplying or dividing an even number of negative terms equals a positive
2×5
Multiply the numbers
10
−14x+10
16x−14x+10
Subtract the terms
More Steps

Evaluate
16x−14x
Collect like terms by calculating the sum or difference of their coefficients
(16−14)x
Subtract the numbers
2x
2x+10
Solution
2(x+5)
Show Solution

Find the roots
x=−5
Evaluate
(8x×1)×2−(7x−5)×2
To find the roots of the expression,set the expression equal to 0
(8x×1)×2−(7x−5)×2=0
Multiply the terms
8x×2−(7x−5)×2=0
Multiply the numbers
16x−(7x−5)×2=0
Multiply the terms
16x−2(7x−5)=0
Calculate
More Steps

Evaluate
16x−2(7x−5)
Expand the expression
More Steps

Calculate
−2(7x−5)
Apply the distributive property
−2×7x−(−2×5)
Multiply the numbers
−14x−(−2×5)
Multiply the numbers
−14x−(−10)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−14x+10
16x−14x+10
Subtract the terms
More Steps

Evaluate
16x−14x
Collect like terms by calculating the sum or difference of their coefficients
(16−14)x
Subtract the numbers
2x
2x+10
2x+10=0
Move the constant to the right-hand side and change its sign
2x=0−10
Removing 0 doesn't change the value,so remove it from the expression
2x=−10
Divide both sides
22x=2−10
Divide the numbers
x=2−10
Solution
More Steps

Evaluate
2−10
Reduce the numbers
1−5
Calculate
−5
x=−5
Show Solution
