Question
Simplify the expression
8x3−6x2−192x4
Evaluate
(8x3−2x2×3)−(4x3×6x×8)
Multiply the terms
(8x3−6x2)−(4x3×6x×8)
Remove the parentheses
8x3−6x2−(4x3×6x×8)
Solution
More Steps

Multiply the terms
4x3×6x×8
Multiply the terms
More Steps

Evaluate
4×6×8
Multiply the terms
24×8
Multiply the numbers
192
192x3×x
Multiply the terms with the same base by adding their exponents
192x3+1
Add the numbers
192x4
8x3−6x2−192x4
Show Solution

Factor the expression
2x2(4x−3−96x2)
Evaluate
(8x3−2x2×3)−(4x3×6x×8)
Multiply the terms
(8x3−6x2)−(4x3×6x×8)
Remove the parentheses
8x3−6x2−(4x3×6x×8)
Multiply
More Steps

Multiply the terms
4x3×6x×8
Multiply the terms
More Steps

Evaluate
4×6×8
Multiply the terms
24×8
Multiply the numbers
192
192x3×x
Multiply the terms with the same base by adding their exponents
192x3+1
Add the numbers
192x4
8x3−6x2−192x4
Rewrite the expression
2x2×4x−2x2×3−2x2×96x2
Solution
2x2(4x−3−96x2)
Show Solution

Find the roots
x1=481−4871i,x2=481+4871i,x3=0
Alternative Form
x1≈0.02083˙−0.175545i,x2≈0.02083˙+0.175545i,x3=0
Evaluate
(8x3−2x2×3)−(4x3×6x×8)
To find the roots of the expression,set the expression equal to 0
(8x3−2x2×3)−(4x3×6x×8)=0
Multiply the terms
(8x3−6x2)−(4x3×6x×8)=0
Remove the parentheses
8x3−6x2−(4x3×6x×8)=0
Multiply
More Steps

Multiply the terms
4x3×6x×8
Multiply the terms
More Steps

Evaluate
4×6×8
Multiply the terms
24×8
Multiply the numbers
192
192x3×x
Multiply the terms with the same base by adding their exponents
192x3+1
Add the numbers
192x4
8x3−6x2−192x4=0
Factor the expression
2x2(4x−3−96x2)=0
Divide both sides
x2(4x−3−96x2)=0
Separate the equation into 2 possible cases
x2=04x−3−96x2=0
The only way a power can be 0 is when the base equals 0
x=04x−3−96x2=0
Solve the equation
More Steps

Evaluate
4x−3−96x2=0
Rewrite in standard form
−96x2+4x−3=0
Multiply both sides
96x2−4x+3=0
Substitute a=96,b=−4 and c=3 into the quadratic formula x=2a−b±b2−4ac
x=2×964±(−4)2−4×96×3
Simplify the expression
x=1924±(−4)2−4×96×3
Simplify the expression
More Steps

Evaluate
(−4)2−4×96×3
Multiply the terms
(−4)2−1152
Rewrite the expression
42−1152
Evaluate the power
16−1152
Subtract the numbers
−1136
x=1924±−1136
Simplify the radical expression
More Steps

Evaluate
−1136
Evaluate the power
1136×−1
Evaluate the power
1136×i
Evaluate the power
471×i
x=1924±471×i
Separate the equation into 2 possible cases
x=1924+471×ix=1924−471×i
Simplify the expression
x=481+4871ix=1924−471×i
Simplify the expression
x=481+4871ix=481−4871i
x=0x=481+4871ix=481−4871i
Solution
x1=481−4871i,x2=481+4871i,x3=0
Alternative Form
x1≈0.02083˙−0.175545i,x2≈0.02083˙+0.175545i,x3=0
Show Solution
