Question
Simplify the expression
24x3−9x2
Evaluate
(8x−3)×3x2
Multiply the terms
3x2(8x−3)
Apply the distributive property
3x2×8x−3x2×3
Multiply the terms
More Steps

Evaluate
3x2×8x
Multiply the numbers
24x2×x
Multiply the terms
More Steps

Evaluate
x2×x
Use the product rule an×am=an+m to simplify the expression
x2+1
Add the numbers
x3
24x3
24x3−3x2×3
Solution
24x3−9x2
Show Solution

Find the roots
x1=0,x2=83
Alternative Form
x1=0,x2=0.375
Evaluate
(8x−3)(3x2)
To find the roots of the expression,set the expression equal to 0
(8x−3)(3x2)=0
Multiply the terms
(8x−3)×3x2=0
Multiply the terms
3x2(8x−3)=0
Elimination the left coefficient
x2(8x−3)=0
Separate the equation into 2 possible cases
x2=08x−3=0
The only way a power can be 0 is when the base equals 0
x=08x−3=0
Solve the equation
More Steps

Evaluate
8x−3=0
Move the constant to the right-hand side and change its sign
8x=0+3
Removing 0 doesn't change the value,so remove it from the expression
8x=3
Divide both sides
88x=83
Divide the numbers
x=83
x=0x=83
Solution
x1=0,x2=83
Alternative Form
x1=0,x2=0.375
Show Solution
