Question Simplify the expression 448z2−560z Evaluate (8z×7)(8z−10)Remove the parentheses 8z×7(8z−10)Multiply the terms 56z(8z−10)Apply the distributive property 56z×8z−56z×10Multiply the terms More Steps Evaluate 56z×8zMultiply the numbers 448z×zMultiply the terms 448z2 448z2−56z×10Solution 448z2−560z Show Solution Factor the expression 112z(4z−5) Evaluate (8z×7)(8z−10)Remove the parentheses 8z×7(8z−10)Multiply the terms 56z(8z−10)Factor the expression 56z×2(4z−5)Solution 112z(4z−5) Show Solution Find the roots z1=0,z2=45Alternative Form z1=0,z2=1.25 Evaluate (8z×7)(8z−10)To find the roots of the expression,set the expression equal to 0 (8z×7)(8z−10)=0Multiply the terms 56z(8z−10)=0Elimination the left coefficient z(8z−10)=0Separate the equation into 2 possible cases z=08z−10=0Solve the equation More Steps Evaluate 8z−10=0Move the constant to the right-hand side and change its sign 8z=0+10Removing 0 doesn't change the value,so remove it from the expression 8z=10Divide both sides 88z=810Divide the numbers z=810Cancel out the common factor 2 z=45 z=0z=45Solution z1=0,z2=45Alternative Form z1=0,z2=1.25 Show Solution