Question
Simplify the expression
27a3−79a2b−493b2a+3431b3
Evaluate
(9a2−491b2)(3a−71b)
Apply the distributive property
9a2×3a−9a2×71b−491b2×3a−(−491b2×71b)
Multiply the terms
More Steps

Evaluate
9a2×3a
Multiply the numbers
27a2×a
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
27a3
27a3−9a2×71b−491b2×3a−(−491b2×71b)
Multiply the numbers
27a3−79a2b−491b2×3a−(−491b2×71b)
Multiply the numbers
27a3−79a2b−493b2a−(−491b2×71b)
Multiply the terms
More Steps

Evaluate
−491b2×71b
Multiply the numbers
More Steps

Evaluate
−491×71
To multiply the fractions,multiply the numerators and denominators separately
−49×71
Multiply the numbers
−3431
−3431b2×b
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
−3431b3
27a3−79a2b−493b2a−(−3431b3)
Solution
27a3−79a2b−493b2a+3431b3
Show Solution

Factor the expression
3431(21a+b)(21a−b)2
Evaluate
(9a2−491b2)(3a−71b)
Use a2−b2=(a−b)(a+b) to factor the expression
491(21a+b)(21a−b)(3a−71b)
Factor the expression
491(21a+b)(21a−b)×71(21a−b)
Solution
3431(21a+b)(21a−b)2
Show Solution
