Question
Simplify the expression
81b2−9b
Evaluate
(9b−1)(9b×1)
Remove the parentheses
(9b−1)×9b×1
Any expression multiplied by 1 remains the same
(9b−1)×9b
Multiply the first two terms
9(9b−1)b
Multiply the terms
More Steps

Evaluate
9(9b−1)
Apply the distributive property
9×9b−9×1
Multiply the numbers
81b−9×1
Any expression multiplied by 1 remains the same
81b−9
(81b−9)b
Apply the distributive property
81b×b−9b
Solution
81b2−9b
Show Solution

Find the roots
b1=0,b2=91
Alternative Form
b1=0,b2=0.1˙
Evaluate
(9b−1)(9b×1)
To find the roots of the expression,set the expression equal to 0
(9b−1)(9b×1)=0
Multiply the terms
(9b−1)×9b=0
Multiply the terms
9b(9b−1)=0
Elimination the left coefficient
b(9b−1)=0
Separate the equation into 2 possible cases
b=09b−1=0
Solve the equation
More Steps

Evaluate
9b−1=0
Move the constant to the right-hand side and change its sign
9b=0+1
Removing 0 doesn't change the value,so remove it from the expression
9b=1
Divide both sides
99b=91
Divide the numbers
b=91
b=0b=91
Solution
b1=0,b2=91
Alternative Form
b1=0,b2=0.1˙
Show Solution
