Question
Simplify the expression
36d2−70d+24
Evaluate
(9d−4)(4d−6)
Apply the distributive property
9d×4d−9d×6−4×4d−(−4×6)
Multiply the terms
More Steps

Evaluate
9d×4d
Multiply the numbers
36d×d
Multiply the terms
36d2
36d2−9d×6−4×4d−(−4×6)
Multiply the numbers
36d2−54d−4×4d−(−4×6)
Multiply the numbers
36d2−54d−16d−(−4×6)
Multiply the numbers
36d2−54d−16d−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
36d2−54d−16d+24
Solution
More Steps

Evaluate
−54d−16d
Collect like terms by calculating the sum or difference of their coefficients
(−54−16)d
Subtract the numbers
−70d
36d2−70d+24
Show Solution

Factor the expression
2(9d−4)(2d−3)
Evaluate
(9d−4)(4d−6)
Factor the expression
(9d−4)×2(2d−3)
Solution
2(9d−4)(2d−3)
Show Solution

Find the roots
d1=94,d2=23
Alternative Form
d1=0.4˙,d2=1.5
Evaluate
(9d−4)(4d−6)
To find the roots of the expression,set the expression equal to 0
(9d−4)(4d−6)=0
Separate the equation into 2 possible cases
9d−4=04d−6=0
Solve the equation
More Steps

Evaluate
9d−4=0
Move the constant to the right-hand side and change its sign
9d=0+4
Removing 0 doesn't change the value,so remove it from the expression
9d=4
Divide both sides
99d=94
Divide the numbers
d=94
d=944d−6=0
Solve the equation
More Steps

Evaluate
4d−6=0
Move the constant to the right-hand side and change its sign
4d=0+6
Removing 0 doesn't change the value,so remove it from the expression
4d=6
Divide both sides
44d=46
Divide the numbers
d=46
Cancel out the common factor 2
d=23
d=94d=23
Solution
d1=94,d2=23
Alternative Form
d1=0.4˙,d2=1.5
Show Solution
