Question
Evaluate the derivative
x12324x23+33
Evaluate
((9x7×3x5−3x−11))′
Evaluate
(9x7×3x5−3x−11)′
Multiply
More Steps

Multiply the terms
9x7×3x5
Multiply the terms
27x7×x5
Multiply the terms with the same base by adding their exponents
27x7+5
Add the numbers
27x12
(27x12−3x−11)′
Rewrite the expression
dxd(27x12−3x−11)
Use differentiation rule dxd(f(x)±g(x))=dxd(f(x))±dxd(g(x))
dxd(27x12)−dxd(3x−11)
Calculate
More Steps

Calculate
dxd(27x12)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
27×dxd(x12)
Use dxdxn=nxn−1 to find derivative
27×12x11
Multiply the terms
324x11
324x11−dxd(3x−11)
Calculate
More Steps

Calculate
dxd(3x−11)
Use differentiation rule dxd(cf(x))=c×dxd(f(x))
3×dxd(x−11)
Use dxdxn=nxn−1 to find derivative
3(−11x−12)
Multiply the terms
−33x−12
324x11−(−33x−12)
Removing 0 doesn't change the value,so remove it from the expression
324x11+33x−12
Rewrite the expression
More Steps

Evaluate
33x−12
Express with a positive exponent using a−n=an1
33×x121
Rewrite the expression
x1233
324x11+x1233
Reduce fractions to a common denominator
x12324x11×x12+x1233
Write all numerators above the common denominator
x12324x11×x12+33
Solution
More Steps

Evaluate
x11×x12
Use the product rule an×am=an+m to simplify the expression
x11+12
Add the numbers
x23
x12324x23+33
Show Solution
