Question
Simplify the expression
6a2b+2b3
Evaluate
(a+b)3−(a−b)3
Expand the expression
a3+3a2b+3ab2+b3−(a−b)3
Expand the expression
a3+3a2b+3ab2+b3−a3+3a2b−3ab2+b3
The sum of two opposites equals 0
More Steps

Evaluate
a3−a3
Collect like terms
(1−1)a3
Add the coefficients
0×a3
Calculate
0
0+3a2b+3ab2+b3+3a2b−3ab2+b3
Remove 0
3a2b+3ab2+b3+3a2b−3ab2+b3
Add the terms
More Steps

Evaluate
3a2b+3a2b
Collect like terms by calculating the sum or difference of their coefficients
(3+3)a2b
Add the numbers
6a2b
6a2b+3ab2+b3−3ab2+b3
The sum of two opposites equals 0
More Steps

Evaluate
3ab2−3ab2
Collect like terms
(3−3)ab2
Add the coefficients
0×ab2
Calculate
0
6a2b+0+b3+b3
Remove 0
6a2b+b3+b3
Solution
More Steps

Evaluate
b3+b3
Collect like terms by calculating the sum or difference of their coefficients
(1+1)b3
Add the numbers
2b3
6a2b+2b3
Show Solution

Factor the expression
2b(3a2+b2)
Evaluate
(a+b)3−(a−b)3
Use a3−b3=(a−b)(a2+ab+b2) to factor the expression
(a+b−a+b)((a+b)2+(a+b)(a−b)+(a−b)2)
Calculate
More Steps

Simplify
a+b−a+b
The sum of two opposites equals 0
More Steps

Evaluate
a−a
Collect like terms
(1−1)a
Add the coefficients
0×a
Calculate
0
0+b+b
Remove 0
b+b
Collect like terms by calculating the sum or difference of their coefficients
(1+1)b
Add the numbers
2b
2b((a+b)2+(a+b)(a−b)+(a−b)2)
Solution
More Steps

Simplify
(a+b)2+(a+b)(a−b)+(a−b)2
Simplify
More Steps

Simplify
(a+b)(a−b)
Apply the distributive property
a×a+a(−b)+ba+b(−b)
Multiply the terms
a2+a(−b)+ba+b(−b)
Use the commutative property to reorder the terms
a2−ab+ba+b(−b)
Multiply the terms
a2−ab+ba−b2
(a+b)2+a2−ab+ba−b2+(a−b)2
Add the terms
More Steps

Evaluate
−ab+ba
Rewrite the expression
−ab+ab
Collect like terms by calculating the sum or difference of their coefficients
(−1+1)ab
Add the numbers
0×ab
Any expression multiplied by 0 equals 0
0
(a+b)2+a2+0−b2+(a−b)2
Removing 0 doesn't change the value,so remove it from the expression
(a+b)2+a2−b2+(a−b)2
Expand the expression
a2+2ab+b2+a2−b2+(a−b)2
Expand the expression
a2+2ab+b2+a2−b2+a2−2ab+b2
Add the terms
More Steps

Evaluate
a2+a2+a2
Collect like terms by calculating the sum or difference of their coefficients
(1+1+1)a2
Add the numbers
3a2
3a2+2ab+b2−b2−2ab+b2
The sum of two opposites equals 0
More Steps

Evaluate
2ab−2ab
Collect like terms
(2−2)ab
Add the coefficients
0×ab
Calculate
0
3a2+0+b2−b2+b2
Remove 0
3a2+b2−b2+b2
Calculate the sum or difference
More Steps

Evaluate
b2−b2+b2
Collect like terms by calculating the sum or difference of their coefficients
(1−1+1)b2
Calculate the sum or difference
b2
3a2+b2
2b(3a2+b2)
Show Solution
