Question
Simplify the expression
a7−a11
Evaluate
(a×a2×a3)(a−a2×a3)
Remove the parentheses
a×a2×a3(a−a2×a3)
Multiply the terms
More Steps

Evaluate
a2×a3
Use the product rule an×am=an+m to simplify the expression
a2+3
Add the numbers
a5
a×a2×a3(a−a5)
Multiply the terms with the same base by adding their exponents
a1+2+3(a−a5)
Add the numbers
a6(a−a5)
Apply the distributive property
a6×a−a6×a5
Multiply the terms
More Steps

Evaluate
a6×a
Use the product rule an×am=an+m to simplify the expression
a6+1
Add the numbers
a7
a7−a6×a5
Solution
More Steps

Evaluate
a6×a5
Use the product rule an×am=an+m to simplify the expression
a6+5
Add the numbers
a11
a7−a11
Show Solution

Factor the expression
a7(1−a)(1+a)(1+a2)
Evaluate
(a×a2×a3)(a−a2×a3)
Remove the parentheses
a×a2×a3(a−a2×a3)
Multiply the terms
More Steps

Evaluate
a2×a3
Use the product rule an×am=an+m to simplify the expression
a2+3
Add the numbers
a5
a×a2×a3(a−a5)
Multiply
More Steps

Multiply the terms
a×a2×a3
Multiply the terms with the same base by adding their exponents
a1+2+3
Add the numbers
a6
a6(a−a5)
Factor the expression
More Steps

Evaluate
a−a5
Rewrite the expression
a−a×a4
Factor out a from the expression
a(1−a4)
Use a2−b2=(a−b)(a+b) to factor the expression
a(1−a2)(1+a2)
Use a2−b2=(a−b)(a+b) to factor the expression
a(1−a)(1+a)(1+a2)
a6×a(1−a)(1+a)(1+a2)
Solution
a7(1−a)(1+a)(1+a2)
Show Solution

Find the roots
a1=−1,a2=0,a3=1
Evaluate
(a×a2×a3)(a−a2×a3)
To find the roots of the expression,set the expression equal to 0
(a×a2×a3)(a−a2×a3)=0
Multiply
More Steps

Multiply the terms
a×a2×a3
Multiply the terms with the same base by adding their exponents
a1+2+3
Add the numbers
a6
a6(a−a2×a3)=0
Multiply the terms
More Steps

Evaluate
a2×a3
Use the product rule an×am=an+m to simplify the expression
a2+3
Add the numbers
a5
a6(a−a5)=0
Separate the equation into 2 possible cases
a6=0a−a5=0
The only way a power can be 0 is when the base equals 0
a=0a−a5=0
Solve the equation
More Steps

Evaluate
a−a5=0
Factor the expression
a(1−a4)=0
Separate the equation into 2 possible cases
a=01−a4=0
Solve the equation
More Steps

Evaluate
1−a4=0
Move the constant to the right-hand side and change its sign
−a4=0−1
Removing 0 doesn't change the value,so remove it from the expression
−a4=−1
Change the signs on both sides of the equation
a4=1
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±41
Simplify the expression
a=±1
Separate the equation into 2 possible cases
a=1a=−1
a=0a=1a=−1
a=0a=0a=1a=−1
Find the union
a=0a=1a=−1
Solution
a1=−1,a2=0,a3=1
Show Solution
