Question
Simplify the expression
a4b2x−2a3b3x+a2b4x
Evaluate
(ab)2x(a−b)2
Multiply the terms
a2b2x(a−b)2
Use (a−b)2=a2−2ab+b2 to expand the expression
a2b2x(a2−2ab+b2)
Apply the distributive property
a2b2xa2−a2b2x×2ab+a2b2xb2
Multiply the terms
More Steps

Evaluate
a2×a2
Use the product rule an×am=an+m to simplify the expression
a2+2
Add the numbers
a4
a4b2x−a2b2x×2ab+a2b2xb2
Multiply the terms
More Steps

Evaluate
a2b2x×2ab
Use the commutative property to reorder the terms
2a2b2xab
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
2a3b2xb
Multiply the terms
More Steps

Evaluate
b2×b
Use the product rule an×am=an+m to simplify the expression
b2+1
Add the numbers
b3
2a3b3x
a4b2x−2a3b3x+a2b2xb2
Solution
More Steps

Evaluate
b2×b2
Use the product rule an×am=an+m to simplify the expression
b2+2
Add the numbers
b4
a4b2x−2a3b3x+a2b4x
Show Solution
