Question
Simplify the expression
a6b3y−3a5b4y+3a4b5y−a3b6y
Evaluate
(ab)3y(a−b)3
Multiply the terms
a3b3y(a−b)3
Use (a−b)3=a3−3a2b+3ab2−b3 to expand the expression
a3b3y(a3−3a2b+3ab2−b3)
Apply the distributive property
a3b3ya3−a3b3y×3a2b+a3b3y×3ab2−a3b3yb3
Multiply the terms
More Steps

Evaluate
a3×a3
Use the product rule an×am=an+m to simplify the expression
a3+3
Add the numbers
a6
a6b3y−a3b3y×3a2b+a3b3y×3ab2−a3b3yb3
Multiply the terms
More Steps

Evaluate
a3b3y×3a2b
Use the commutative property to reorder the terms
3a3b3ya2b
Multiply the terms
More Steps

Evaluate
a3×a2
Use the product rule an×am=an+m to simplify the expression
a3+2
Add the numbers
a5
3a5b3yb
Multiply the terms
More Steps

Evaluate
b3×b
Use the product rule an×am=an+m to simplify the expression
b3+1
Add the numbers
b4
3a5b4y
a6b3y−3a5b4y+a3b3y×3ab2−a3b3yb3
Multiply the terms
More Steps

Evaluate
a3b3y×3ab2
Use the commutative property to reorder the terms
3a3b3yab2
Multiply the terms
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
3a4b3yb2
Multiply the terms
More Steps

Evaluate
b3×b2
Use the product rule an×am=an+m to simplify the expression
b3+2
Add the numbers
b5
3a4b5y
a6b3y−3a5b4y+3a4b5y−a3b3yb3
Solution
More Steps

Evaluate
b3×b3
Use the product rule an×am=an+m to simplify the expression
b3+3
Add the numbers
b6
a6b3y−3a5b4y+3a4b5y−a3b6y
Show Solution
