Question
ab(2x−y)ab(4x−3y)
Simplify the expression
8a2b2x2−10a2b2xy+3a2b2y2
Evaluate
ab(2x−y)ab(4x−3y)
Multiply the terms
a2b(2x−y)b(4x−3y)
Multiply the terms
a2b2(2x−y)(4x−3y)
Multiply the terms
More Steps

Evaluate
a2b2(2x−y)
Apply the distributive property
a2b2×2x−a2b2y
Use the commutative property to reorder the terms
2a2b2x−a2b2y
(2a2b2x−a2b2y)(4x−3y)
Apply the distributive property
2a2b2x×4x−2a2b2x×3y−a2b2y×4x−(−a2b2y×3y)
Multiply the terms
More Steps

Evaluate
2a2b2x×4x
Multiply the numbers
8a2b2x×x
Multiply the terms
8a2b2x2
8a2b2x2−2a2b2x×3y−a2b2y×4x−(−a2b2y×3y)
Multiply the numbers
8a2b2x2−6a2b2xy−a2b2y×4x−(−a2b2y×3y)
Multiply the numbers
8a2b2x2−6a2b2xy−4a2b2yx−(−a2b2y×3y)
Multiply the terms
More Steps

Evaluate
−a2b2y×3y
Multiply the numbers
−3a2b2y×y
Multiply the terms
−3a2b2y2
8a2b2x2−6a2b2xy−4a2b2yx−(−3a2b2y2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
8a2b2x2−6a2b2xy−4a2b2yx+3a2b2y2
Solution
More Steps

Evaluate
−6a2b2xy−4a2b2yx
Rewrite the expression
−6a2b2xy−4a2b2xy
Collect like terms by calculating the sum or difference of their coefficients
(−6−4)a2b2xy
Subtract the numbers
−10a2b2xy
8a2b2x2−10a2b2xy+3a2b2y2
Show Solution
