Question
Simplify the expression
a22a2+1+2a
Evaluate
(a+a1+2)×a1+1
Add the terms
More Steps

Evaluate
a+a1+2
Reduce fractions to a common denominator
aa×a+a1+a2a
Write all numerators above the common denominator
aa×a+1+2a
Multiply the terms
aa2+1+2a
aa2+1+2a×a1+1
Multiply the terms
More Steps

Multiply the terms
aa2+1+2a×a1
Multiply the terms
a×aa2+1+2a
Multiply the terms
a2a2+1+2a
a2a2+1+2a+1
Reduce fractions to a common denominator
a2a2+1+2a+a2a2
Write all numerators above the common denominator
a2a2+1+2a+a2
Solution
More Steps

Evaluate
a2+a2
Collect like terms by calculating the sum or difference of their coefficients
(1+1)a2
Add the numbers
2a2
a22a2+1+2a
Show Solution

Find the excluded values
a=0
Evaluate
(a+a1+2)×a1+1
Solution
a=0
Show Solution

Find the roots
a∈/R
Evaluate
(a+a1+2)×a1+1
To find the roots of the expression,set the expression equal to 0
(a+a1+2)×a1+1=0
Find the domain
(a+a1+2)×a1+1=0,a=0
Calculate
(a+a1+2)×a1+1=0
Add the terms
More Steps

Evaluate
a+a1+2
Reduce fractions to a common denominator
aa×a+a1+a2a
Write all numerators above the common denominator
aa×a+1+2a
Multiply the terms
aa2+1+2a
aa2+1+2a×a1+1=0
Multiply the terms
More Steps

Multiply the terms
aa2+1+2a×a1
Multiply the terms
a×aa2+1+2a
Multiply the terms
a2a2+1+2a
a2a2+1+2a+1=0
Add the terms
More Steps

Evaluate
a2a2+1+2a+1
Reduce fractions to a common denominator
a2a2+1+2a+a2a2
Write all numerators above the common denominator
a2a2+1+2a+a2
Add the terms
More Steps

Evaluate
a2+a2
Collect like terms by calculating the sum or difference of their coefficients
(1+1)a2
Add the numbers
2a2
a22a2+1+2a
a22a2+1+2a=0
Cross multiply
2a2+1+2a=a2×0
Simplify the equation
2a2+1+2a=0
Rewrite in standard form
2a2+2a+1=0
Substitute a=2,b=2 and c=1 into the quadratic formula a=2a−b±b2−4ac
a=2×2−2±22−4×2
Simplify the expression
a=4−2±22−4×2
Simplify the expression
More Steps

Evaluate
22−4×2
Multiply the numbers
22−8
Evaluate the power
4−8
Subtract the numbers
−4
a=4−2±−4
Solution
a∈/R
Show Solution
