Question
Simplify the expression
9a6−27a5
Evaluate
a3(a2×9)(a−3)
Remove the parentheses
a3×a2×9(a−3)
Multiply the terms with the same base by adding their exponents
a3+2×9(a−3)
Add the numbers
a5×9(a−3)
Use the commutative property to reorder the terms
9a5(a−3)
Apply the distributive property
9a5×a−9a5×3
Multiply the terms
More Steps

Evaluate
a5×a
Use the product rule an×am=an+m to simplify the expression
a5+1
Add the numbers
a6
9a6−9a5×3
Solution
9a6−27a5
Show Solution

Find the roots
a1=0,a2=3
Evaluate
(a3)(a2×9)(a−3)
To find the roots of the expression,set the expression equal to 0
(a3)(a2×9)(a−3)=0
Calculate
a3(a2×9)(a−3)=0
Use the commutative property to reorder the terms
a3×9a2(a−3)=0
Multiply
More Steps

Multiply the terms
a3×9a2(a−3)
Multiply the terms with the same base by adding their exponents
a3+2×9(a−3)
Add the numbers
a5×9(a−3)
Use the commutative property to reorder the terms
9a5(a−3)
9a5(a−3)=0
Elimination the left coefficient
a5(a−3)=0
Separate the equation into 2 possible cases
a5=0a−3=0
The only way a power can be 0 is when the base equals 0
a=0a−3=0
Solve the equation
More Steps

Evaluate
a−3=0
Move the constant to the right-hand side and change its sign
a=0+3
Removing 0 doesn't change the value,so remove it from the expression
a=3
a=0a=3
Solution
a1=0,a2=3
Show Solution
