Question
Simplify the expression
a310a4−13a2+3−30a3+9a
Evaluate
(a−a1−3)(a2×a21×10−a33×a)
Subtract the terms
More Steps

Evaluate
a−a1−3
Reduce fractions to a common denominator
aa×a−a1−a3a
Write all numerators above the common denominator
aa×a−1−3a
Multiply the terms
aa2−1−3a
aa2−1−3a×(a2×a21×10−a33×a)
Multiply the terms
More Steps

Multiply the terms
a2×a21×10
Multiply the terms
More Steps

Multiply the terms
a2×a21
Cancel out the common factor a2
1×1
Multiply the terms
1
1×10
Any expression multiplied by 1 remains the same
10
aa2−1−3a×(10−a33×a)
Multiply the terms
More Steps

Multiply the terms
a33×a
Cancel out the common factor a
a23×1
Multiply the terms
a23
aa2−1−3a×(10−a23)
Subtract the terms
More Steps

Simplify
10−a23
Reduce fractions to a common denominator
a210a2−a23
Write all numerators above the common denominator
a210a2−3
aa2−1−3a×a210a2−3
Multiply the terms
a×a2(a2−1−3a)(10a2−3)
Multiply the terms
More Steps

Evaluate
a×a2
Use the product rule an×am=an+m to simplify the expression
a1+2
Add the numbers
a3
a3(a2−1−3a)(10a2−3)
Solution
More Steps

Evaluate
(a2−1−3a)(10a2−3)
Apply the distributive property
a2×10a2−a2×3−10a2−(−3)−3a×10a2−(−3a×3)
Multiply the terms
More Steps

Evaluate
a2×10a2
Use the commutative property to reorder the terms
10a2×a2
Multiply the terms
10a4
10a4−a2×3−10a2−(−3)−3a×10a2−(−3a×3)
Use the commutative property to reorder the terms
10a4−3a2−10a2−(−3)−3a×10a2−(−3a×3)
Multiply the terms
More Steps

Evaluate
−3a×10a2
Multiply the numbers
−30a×a2
Multiply the terms
−30a3
10a4−3a2−10a2−(−3)−30a3−(−3a×3)
Multiply the numbers
10a4−3a2−10a2−(−3)−30a3−(−9a)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
10a4−3a2−10a2+3−30a3+9a
Subtract the terms
More Steps

Evaluate
−3a2−10a2
Collect like terms by calculating the sum or difference of their coefficients
(−3−10)a2
Subtract the numbers
−13a2
10a4−13a2+3−30a3+9a
a310a4−13a2+3−30a3+9a
Show Solution

Find the excluded values
a=0
Evaluate
(a−a1−3)(a2×a21×10−a33×a)
To find the excluded values,set the denominators equal to 0
a=0a2=0a3=0
The only way a power can be 0 is when the base equals 0
a=0a=0a3=0
The only way a power can be 0 is when the base equals 0
a=0a=0a=0
Solution
a=0
Show Solution

Find the roots
a1=−1030,a2=23−13,a3=1030,a4=23+13
Alternative Form
a1≈−0.547723,a2≈−0.302776,a3≈0.547723,a4≈3.302776
Evaluate
(a−a1−3)(a2×a21×10−a33×a)
To find the roots of the expression,set the expression equal to 0
(a−a1−3)(a2×a21×10−a33×a)=0
Find the domain
More Steps

Evaluate
⎩⎨⎧a=0a2=0a3=0
The only way a power can not be 0 is when the base not equals 0
⎩⎨⎧a=0a=0a3=0
The only way a power can not be 0 is when the base not equals 0
⎩⎨⎧a=0a=0a=0
Simplify
a=0
(a−a1−3)(a2×a21×10−a33×a)=0,a=0
Calculate
(a−a1−3)(a2×a21×10−a33×a)=0
Subtract the terms
More Steps

Simplify
a−a1
Reduce fractions to a common denominator
aa×a−a1
Write all numerators above the common denominator
aa×a−1
Multiply the terms
aa2−1
(aa2−1−3)(a2×a21×10−a33×a)=0
Subtract the terms
More Steps

Simplify
aa2−1−3
Reduce fractions to a common denominator
aa2−1−a3a
Write all numerators above the common denominator
aa2−1−3a
aa2−1−3a×(a2×a21×10−a33×a)=0
Multiply the terms
More Steps

Multiply the terms
a2×a21×10
Multiply the terms
More Steps

Multiply the terms
a2×a21
Cancel out the common factor a2
1×1
Multiply the terms
1
1×10
Any expression multiplied by 1 remains the same
10
aa2−1−3a×(10−a33×a)=0
Multiply the terms
More Steps

Multiply the terms
a33×a
Cancel out the common factor a
a23×1
Multiply the terms
a23
aa2−1−3a×(10−a23)=0
Subtract the terms
More Steps

Simplify
10−a23
Reduce fractions to a common denominator
a210a2−a23
Write all numerators above the common denominator
a210a2−3
aa2−1−3a×a210a2−3=0
Multiply the terms
More Steps

Multiply the terms
aa2−1−3a×a210a2−3
Multiply the terms
a×a2(a2−1−3a)(10a2−3)
Multiply the terms
More Steps

Evaluate
a×a2
Use the product rule an×am=an+m to simplify the expression
a1+2
Add the numbers
a3
a3(a2−1−3a)(10a2−3)
a3(a2−1−3a)(10a2−3)=0
Cross multiply
(a2−1−3a)(10a2−3)=a3×0
Simplify the equation
(a2−1−3a)(10a2−3)=0
Separate the equation into 2 possible cases
a2−1−3a=010a2−3=0
Solve the equation
More Steps

Evaluate
a2−1−3a=0
Rewrite in standard form
a2−3a−1=0
Substitute a=1,b=−3 and c=−1 into the quadratic formula a=2a−b±b2−4ac
a=23±(−3)2−4(−1)
Simplify the expression
More Steps

Evaluate
(−3)2−4(−1)
Simplify
(−3)2−(−4)
Rewrite the expression
32−(−4)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+4
Evaluate the power
9+4
Add the numbers
13
a=23±13
Separate the equation into 2 possible cases
a=23+13a=23−13
a=23+13a=23−1310a2−3=0
Solve the equation
More Steps

Evaluate
10a2−3=0
Move the constant to the right-hand side and change its sign
10a2=0+3
Removing 0 doesn't change the value,so remove it from the expression
10a2=3
Divide both sides
1010a2=103
Divide the numbers
a2=103
Take the root of both sides of the equation and remember to use both positive and negative roots
a=±103
Simplify the expression
More Steps

Evaluate
103
To take a root of a fraction,take the root of the numerator and denominator separately
103
Multiply by the Conjugate
10×103×10
Multiply the numbers
10×1030
When a square root of an expression is multiplied by itself,the result is that expression
1030
a=±1030
Separate the equation into 2 possible cases
a=1030a=−1030
a=23+13a=23−13a=1030a=−1030
Check if the solution is in the defined range
a=23+13a=23−13a=1030a=−1030,a=0
Find the intersection of the solution and the defined range
a=23+13a=23−13a=1030a=−1030
Solution
a1=−1030,a2=23−13,a3=1030,a4=23+13
Alternative Form
a1≈−0.547723,a2≈−0.302776,a3≈0.547723,a4≈3.302776
Show Solution
