Question
Simplify the expression
16a4−320a3+2240a2−6400a+6144
Evaluate
(a−2)(a−4)(a−6)(a−8)×16
Use the commutative property to reorder the terms
16(a−2)(a−4)(a−6)(a−8)
Multiply the terms
More Steps

Evaluate
16(a−2)
Apply the distributive property
16a−16×2
Multiply the numbers
16a−32
(16a−32)(a−4)(a−6)(a−8)
Multiply the terms
More Steps

Evaluate
(16a−32)(a−4)
Apply the distributive property
16a×a−16a×4−32a−(−32×4)
Multiply the terms
16a2−16a×4−32a−(−32×4)
Multiply the numbers
16a2−64a−32a−(−32×4)
Multiply the numbers
16a2−64a−32a−(−128)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
16a2−64a−32a+128
Subtract the terms
More Steps

Evaluate
−64a−32a
Collect like terms by calculating the sum or difference of their coefficients
(−64−32)a
Subtract the numbers
−96a
16a2−96a+128
(16a2−96a+128)(a−6)(a−8)
Multiply the terms
More Steps

Evaluate
(16a2−96a+128)(a−6)
Apply the distributive property
16a2×a−16a2×6−96a×a−(−96a×6)+128a−128×6
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
16a3−16a2×6−96a×a−(−96a×6)+128a−128×6
Multiply the numbers
16a3−96a2−96a×a−(−96a×6)+128a−128×6
Multiply the terms
16a3−96a2−96a2−(−96a×6)+128a−128×6
Multiply the numbers
16a3−96a2−96a2−(−576a)+128a−128×6
Multiply the numbers
16a3−96a2−96a2−(−576a)+128a−768
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
16a3−96a2−96a2+576a+128a−768
Subtract the terms
More Steps

Evaluate
−96a2−96a2
Collect like terms by calculating the sum or difference of their coefficients
(−96−96)a2
Subtract the numbers
−192a2
16a3−192a2+576a+128a−768
Add the terms
More Steps

Evaluate
576a+128a
Collect like terms by calculating the sum or difference of their coefficients
(576+128)a
Add the numbers
704a
16a3−192a2+704a−768
(16a3−192a2+704a−768)(a−8)
Apply the distributive property
16a3×a−16a3×8−192a2×a−(−192a2×8)+704a×a−704a×8−768a−(−768×8)
Multiply the terms
More Steps

Evaluate
a3×a
Use the product rule an×am=an+m to simplify the expression
a3+1
Add the numbers
a4
16a4−16a3×8−192a2×a−(−192a2×8)+704a×a−704a×8−768a−(−768×8)
Multiply the numbers
16a4−128a3−192a2×a−(−192a2×8)+704a×a−704a×8−768a−(−768×8)
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
16a4−128a3−192a3−(−192a2×8)+704a×a−704a×8−768a−(−768×8)
Multiply the numbers
16a4−128a3−192a3−(−1536a2)+704a×a−704a×8−768a−(−768×8)
Multiply the terms
16a4−128a3−192a3−(−1536a2)+704a2−704a×8−768a−(−768×8)
Multiply the numbers
16a4−128a3−192a3−(−1536a2)+704a2−5632a−768a−(−768×8)
Multiply the numbers
16a4−128a3−192a3−(−1536a2)+704a2−5632a−768a−(−6144)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
16a4−128a3−192a3+1536a2+704a2−5632a−768a+6144
Subtract the terms
More Steps

Evaluate
−128a3−192a3
Collect like terms by calculating the sum or difference of their coefficients
(−128−192)a3
Subtract the numbers
−320a3
16a4−320a3+1536a2+704a2−5632a−768a+6144
Add the terms
More Steps

Evaluate
1536a2+704a2
Collect like terms by calculating the sum or difference of their coefficients
(1536+704)a2
Add the numbers
2240a2
16a4−320a3+2240a2−5632a−768a+6144
Solution
More Steps

Evaluate
−5632a−768a
Collect like terms by calculating the sum or difference of their coefficients
(−5632−768)a
Subtract the numbers
−6400a
16a4−320a3+2240a2−6400a+6144
Show Solution

Find the roots
a1=2,a2=4,a3=6,a4=8
Evaluate
(a−2)(a−4)(a−6)(a−8)×16
To find the roots of the expression,set the expression equal to 0
(a−2)(a−4)(a−6)(a−8)×16=0
Use the commutative property to reorder the terms
16(a−2)(a−4)(a−6)(a−8)=0
Elimination the left coefficient
(a−2)(a−4)(a−6)(a−8)=0
Separate the equation into 4 possible cases
a−2=0a−4=0a−6=0a−8=0
Solve the equation
More Steps

Evaluate
a−2=0
Move the constant to the right-hand side and change its sign
a=0+2
Removing 0 doesn't change the value,so remove it from the expression
a=2
a=2a−4=0a−6=0a−8=0
Solve the equation
More Steps

Evaluate
a−4=0
Move the constant to the right-hand side and change its sign
a=0+4
Removing 0 doesn't change the value,so remove it from the expression
a=4
a=2a=4a−6=0a−8=0
Solve the equation
More Steps

Evaluate
a−6=0
Move the constant to the right-hand side and change its sign
a=0+6
Removing 0 doesn't change the value,so remove it from the expression
a=6
a=2a=4a=6a−8=0
Solve the equation
More Steps

Evaluate
a−8=0
Move the constant to the right-hand side and change its sign
a=0+8
Removing 0 doesn't change the value,so remove it from the expression
a=8
a=2a=4a=6a=8
Solution
a1=2,a2=4,a3=6,a4=8
Show Solution
