Question
Simplify the expression
19a−3a2−27
Evaluate
a−3(a−3)(a−3)
Multiply the terms
a−3(a−3)2
Expand the expression
More Steps

Calculate
−3(a−3)2
Simplify
−3(a2−6a+9)
Apply the distributive property
−3a2−(−3×6a)−3×9
Multiply the numbers
−3a2−(−18a)−3×9
Multiply the numbers
−3a2−(−18a)−27
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3a2+18a−27
a−3a2+18a−27
Solution
More Steps

Evaluate
a+18a
Collect like terms by calculating the sum or difference of their coefficients
(1+18)a
Add the numbers
19a
19a−3a2−27
Show Solution

Find the roots
a1=619−37,a2=619+37
Alternative Form
a1≈2.152873,a2≈4.18046
Evaluate
(a−3(a−3)(a−3))
To find the roots of the expression,set the expression equal to 0
a−3(a−3)(a−3)=0
Multiply the terms
a−3(a−3)2=0
Subtract the terms
More Steps

Simplify
a−3(a−3)2
Expand the expression
More Steps

Calculate
−3(a−3)2
Simplify
−3(a2−6a+9)
Apply the distributive property
−3a2−(−3×6a)−3×9
Multiply the numbers
−3a2−(−18a)−3×9
Multiply the numbers
−3a2−(−18a)−27
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−3a2+18a−27
a−3a2+18a−27
Add the terms
More Steps

Evaluate
a+18a
Collect like terms by calculating the sum or difference of their coefficients
(1+18)a
Add the numbers
19a
19a−3a2−27
19a−3a2−27=0
Rewrite in standard form
−3a2+19a−27=0
Multiply both sides
3a2−19a+27=0
Substitute a=3,b=−19 and c=27 into the quadratic formula a=2a−b±b2−4ac
a=2×319±(−19)2−4×3×27
Simplify the expression
a=619±(−19)2−4×3×27
Simplify the expression
More Steps

Evaluate
(−19)2−4×3×27
Multiply the terms
More Steps

Multiply the terms
4×3×27
Multiply the terms
12×27
Multiply the numbers
324
(−19)2−324
Rewrite the expression
192−324
Evaluate the power
361−324
Subtract the numbers
37
a=619±37
Separate the equation into 2 possible cases
a=619+37a=619−37
Solution
a1=619−37,a2=619+37
Alternative Form
a1≈2.152873,a2≈4.18046
Show Solution
