Question
Simplify the expression
3a3b3−4a2b4+b5a
Evaluate
(a−b)(3a−b)b3a
Multiply the terms
More Steps

Evaluate
(a−b)(3a−b)
Apply the distributive property
a×3a−ab−b×3a−(−b×b)
Multiply the terms
More Steps

Evaluate
a×3a
Use the commutative property to reorder the terms
3a×a
Multiply the terms
3a2
3a2−ab−b×3a−(−b×b)
Multiply the numbers
3a2−ab−3ba−(−b×b)
Multiply the terms
3a2−ab−3ba−(−b2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
3a2−ab−3ba+b2
Subtract the terms
More Steps

Evaluate
−ab−3ba
Rewrite the expression
−ab−3ab
Collect like terms by calculating the sum or difference of their coefficients
(−1−3)ab
Subtract the numbers
−4ab
3a2−4ab+b2
(3a2−4ab+b2)b3a
Multiply the terms
More Steps

Evaluate
(3a2−4ab+b2)b3
Apply the distributive property
3a2b3−4ab×b3+b2×b3
Multiply the terms
More Steps

Evaluate
b×b3
Use the product rule an×am=an+m to simplify the expression
b1+3
Add the numbers
b4
3a2b3−4ab4+b2×b3
Multiply the terms
More Steps

Evaluate
b2×b3
Use the product rule an×am=an+m to simplify the expression
b2+3
Add the numbers
b5
3a2b3−4ab4+b5
(3a2b3−4ab4+b5)a
Apply the distributive property
3a2b3a−4ab4a+b5a
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
3a3b3−4ab4a+b5a
Solution
3a3b3−4a2b4+b5a
Show Solution
