Question
Simplify the expression
a4b2+2a3b2c−6a2b2c2−2a4bc+2a3bc2+2a2bc3+a4c2−2a3c3+a2c4−2a3b3+2a2b3c+2ab3c2+2ab2c3−2abc4+b4a2−2b4ac+b4c2−2b3c3+b2c4
Evaluate
(a−b)(b−c)(b−c)(a−c)(a−c)(a−b)
Multiply the first two terms
(a−b)(b−c)2(a−c)(a−c)(a−b)
Multiply the first two terms
(a−b)(b−c)2(a−c)2(a−b)
Multiply the terms
(a−b)2(b−c)2(a−c)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(a2−2ab+b2)(b−c)2(a−c)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(a2−2ab+b2)(b2−2bc+c2)(a−c)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(a2−2ab+b2)(b2−2bc+c2)(a2−2ac+c2)
Multiply the terms
More Steps

Evaluate
(a2−2ab+b2)(b2−2bc+c2)
Apply the distributive property
a2b2−a2×2bc+a2c2−2ab×b2−(−2ab×2bc)−2abc2+b2×b2−b2×2bc+b2c2
Use the commutative property to reorder the terms
a2b2−2a2bc+a2c2−2ab×b2−(−2ab×2bc)−2abc2+b2×b2−b2×2bc+b2c2
Multiply the terms
More Steps

Evaluate
b×b2
Use the product rule an×am=an+m to simplify the expression
b1+2
Add the numbers
b3
a2b2−2a2bc+a2c2−2ab3−(−2ab×2bc)−2abc2+b2×b2−b2×2bc+b2c2
Multiply the terms
More Steps

Evaluate
−2ab×2bc
Multiply the numbers
−4ab×bc
Multiply the terms
−4ab2c
a2b2−2a2bc+a2c2−2ab3−(−4ab2c)−2abc2+b2×b2−b2×2bc+b2c2
Multiply the terms
More Steps

Evaluate
b2×b2
Use the product rule an×am=an+m to simplify the expression
b2+2
Add the numbers
b4
a2b2−2a2bc+a2c2−2ab3−(−4ab2c)−2abc2+b4−b2×2bc+b2c2
Multiply the terms
More Steps

Evaluate
b2×2bc
Use the commutative property to reorder the terms
2b2×bc
Multiply the terms
2b3c
a2b2−2a2bc+a2c2−2ab3−(−4ab2c)−2abc2+b4−2b3c+b2c2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a2b2−2a2bc+a2c2−2ab3+4ab2c−2abc2+b4−2b3c+b2c2
(a2b2−2a2bc+a2c2−2ab3+4ab2c−2abc2+b4−2b3c+b2c2)(a2−2ac+c2)
Apply the distributive property
a2b2a2−a2b2×2ac+a2b2c2−2a2bca2−(−2a2bc×2ac)−2a2bc×c2+a2c2a2−a2c2×2ac+a2c2×c2−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
a2×a2
Use the product rule an×am=an+m to simplify the expression
a2+2
Add the numbers
a4
a4b2−a2b2×2ac+a2b2c2−2a2bca2−(−2a2bc×2ac)−2a2bc×c2+a2c2a2−a2c2×2ac+a2c2×c2−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
a2b2×2ac
Use the commutative property to reorder the terms
2a2b2ac
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
2a3b2c
a4b2−2a3b2c+a2b2c2−2a2bca2−(−2a2bc×2ac)−2a2bc×c2+a2c2a2−a2c2×2ac+a2c2×c2−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
a2×a2
Use the product rule an×am=an+m to simplify the expression
a2+2
Add the numbers
a4
a4b2−2a3b2c+a2b2c2−2a4bc−(−2a2bc×2ac)−2a2bc×c2+a2c2a2−a2c2×2ac+a2c2×c2−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
−2a2bc×2ac
Multiply the numbers
−4a2bcac
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
−4a3bc×c
Multiply the terms
−4a3bc2
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc×c2+a2c2a2−a2c2×2ac+a2c2×c2−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
c×c2
Use the product rule an×am=an+m to simplify the expression
c1+2
Add the numbers
c3
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a2c2a2−a2c2×2ac+a2c2×c2−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
a2×a2
Use the product rule an×am=an+m to simplify the expression
a2+2
Add the numbers
a4
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−a2c2×2ac+a2c2×c2−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
a2c2×2ac
Use the commutative property to reorder the terms
2a2c2ac
Multiply the terms
More Steps

Evaluate
a2×a
Use the product rule an×am=an+m to simplify the expression
a2+1
Add the numbers
a3
2a3c2×c
Multiply the terms
More Steps

Evaluate
c2×c
Use the product rule an×am=an+m to simplify the expression
c2+1
Add the numbers
c3
2a3c3
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c2×c2−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
c2×c2
Use the product rule an×am=an+m to simplify the expression
c2+2
Add the numbers
c4
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2ab3a2−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
a×a2
Use the product rule an×am=an+m to simplify the expression
a1+2
Add the numbers
a3
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−2ab3×2ac)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
−2ab3×2ac
Multiply the numbers
−4ab3ac
Multiply the terms
−4a2b3c
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4ab2ca2−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
a×a2
Use the product rule an×am=an+m to simplify the expression
a1+2
Add the numbers
a3
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−4ab2c×2ac+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
4ab2c×2ac
Multiply the numbers
8ab2cac
Multiply the terms
8a2b2c×c
Multiply the terms
8a2b2c2
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c×c2−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
c×c2
Use the product rule an×am=an+m to simplify the expression
c1+2
Add the numbers
c3
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2abc2a2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
a×a2
Use the product rule an×am=an+m to simplify the expression
a1+2
Add the numbers
a3
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2−(−2abc2×2ac)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
−2abc2×2ac
Multiply the numbers
−4abc2ac
Multiply the terms
−4a2bc2×c
Multiply the terms
More Steps

Evaluate
c2×c
Use the product rule an×am=an+m to simplify the expression
c2+1
Add the numbers
c3
−4a2bc3
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2−(−4a2bc3)−2abc2×c2+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
c2×c2
Use the product rule an×am=an+m to simplify the expression
c2+2
Add the numbers
c4
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2−(−4a2bc3)−2abc4+b4a2−b4×2ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Use the commutative property to reorder the terms
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2−(−4a2bc3)−2abc4+b4a2−2b4ac+b4c2−2b3ca2−(−2b3c×2ac)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
−2b3c×2ac
Multiply the numbers
−4b3cac
Multiply the terms
−4b3c2a
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2−(−4a2bc3)−2abc4+b4a2−2b4ac+b4c2−2b3ca2−(−4b3c2a)−2b3c×c2+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
c×c2
Use the product rule an×am=an+m to simplify the expression
c1+2
Add the numbers
c3
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2−(−4a2bc3)−2abc4+b4a2−2b4ac+b4c2−2b3ca2−(−4b3c2a)−2b3c3+b2c2a2−b2c2×2ac+b2c2×c2
Multiply the terms
More Steps

Evaluate
b2c2×2ac
Use the commutative property to reorder the terms
2b2c2ac
Multiply the terms
More Steps

Evaluate
c2×c
Use the product rule an×am=an+m to simplify the expression
c2+1
Add the numbers
c3
2b2c3a
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2−(−4a2bc3)−2abc4+b4a2−2b4ac+b4c2−2b3ca2−(−4b3c2a)−2b3c3+b2c2a2−2b2c3a+b2c2×c2
Multiply the terms
More Steps

Evaluate
c2×c2
Use the product rule an×am=an+m to simplify the expression
c2+2
Add the numbers
c4
a4b2−2a3b2c+a2b2c2−2a4bc−(−4a3bc2)−2a2bc3+a4c2−2a3c3+a2c4−2a3b3−(−4a2b3c)−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2−(−4a2bc3)−2abc4+b4a2−2b4ac+b4c2−2b3ca2−(−4b3c2a)−2b3c3+b2c2a2−2b2c3a+b2c4
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a4b2−2a3b2c+a2b2c2−2a4bc+4a3bc2−2a2bc3+a4c2−2a3c3+a2c4−2a3b3+4a2b3c−2ab3c2+4a3b2c−8a2b2c2+4ab2c3−2a3bc2+4a2bc3−2abc4+b4a2−2b4ac+b4c2−2b3ca2+4b3c2a−2b3c3+b2c2a2−2b2c3a+b2c4
Add the terms
More Steps

Evaluate
−2a3b2c+4a3b2c
Collect like terms by calculating the sum or difference of their coefficients
(−2+4)a3b2c
Add the numbers
2a3b2c
a4b2+2a3b2c+a2b2c2−2a4bc+4a3bc2−2a2bc3+a4c2−2a3c3+a2c4−2a3b3+4a2b3c−2ab3c2−8a2b2c2+4ab2c3−2a3bc2+4a2bc3−2abc4+b4a2−2b4ac+b4c2−2b3ca2+4b3c2a−2b3c3+b2c2a2−2b2c3a+b2c4
Calculate the sum or difference
More Steps

Evaluate
a2b2c2−8a2b2c2+b2c2a2
Rewrite the expression
a2b2c2−8a2b2c2+a2b2c2
Collect like terms by calculating the sum or difference of their coefficients
(1−8+1)a2b2c2
Calculate the sum or difference
−6a2b2c2
a4b2+2a3b2c−6a2b2c2−2a4bc+4a3bc2−2a2bc3+a4c2−2a3c3+a2c4−2a3b3+4a2b3c−2ab3c2+4ab2c3−2a3bc2+4a2bc3−2abc4+b4a2−2b4ac+b4c2−2b3ca2+4b3c2a−2b3c3−2b2c3a+b2c4
Subtract the terms
More Steps

Evaluate
4a3bc2−2a3bc2
Collect like terms by calculating the sum or difference of their coefficients
(4−2)a3bc2
Subtract the numbers
2a3bc2
a4b2+2a3b2c−6a2b2c2−2a4bc+2a3bc2−2a2bc3+a4c2−2a3c3+a2c4−2a3b3+4a2b3c−2ab3c2+4ab2c3+4a2bc3−2abc4+b4a2−2b4ac+b4c2−2b3ca2+4b3c2a−2b3c3−2b2c3a+b2c4
Add the terms
More Steps

Evaluate
−2a2bc3+4a2bc3
Collect like terms by calculating the sum or difference of their coefficients
(−2+4)a2bc3
Add the numbers
2a2bc3
a4b2+2a3b2c−6a2b2c2−2a4bc+2a3bc2+2a2bc3+a4c2−2a3c3+a2c4−2a3b3+4a2b3c−2ab3c2+4ab2c3−2abc4+b4a2−2b4ac+b4c2−2b3ca2+4b3c2a−2b3c3−2b2c3a+b2c4
Subtract the terms
More Steps

Evaluate
4a2b3c−2b3ca2
Rewrite the expression
4a2b3c−2a2b3c
Collect like terms by calculating the sum or difference of their coefficients
(4−2)a2b3c
Subtract the numbers
2a2b3c
a4b2+2a3b2c−6a2b2c2−2a4bc+2a3bc2+2a2bc3+a4c2−2a3c3+a2c4−2a3b3+2a2b3c−2ab3c2+4ab2c3−2abc4+b4a2−2b4ac+b4c2+4b3c2a−2b3c3−2b2c3a+b2c4
Add the terms
More Steps

Evaluate
−2ab3c2+4b3c2a
Rewrite the expression
−2ab3c2+4ab3c2
Collect like terms by calculating the sum or difference of their coefficients
(−2+4)ab3c2
Add the numbers
2ab3c2
a4b2+2a3b2c−6a2b2c2−2a4bc+2a3bc2+2a2bc3+a4c2−2a3c3+a2c4−2a3b3+2a2b3c+2ab3c2+4ab2c3−2abc4+b4a2−2b4ac+b4c2−2b3c3−2b2c3a+b2c4
Solution
More Steps

Evaluate
4ab2c3−2b2c3a
Rewrite the expression
4ab2c3−2ab2c3
Collect like terms by calculating the sum or difference of their coefficients
(4−2)ab2c3
Subtract the numbers
2ab2c3
a4b2+2a3b2c−6a2b2c2−2a4bc+2a3bc2+2a2bc3+a4c2−2a3c3+a2c4−2a3b3+2a2b3c+2ab3c2+2ab2c3−2abc4+b4a2−2b4ac+b4c2−2b3c3+b2c4
Show Solution
