Question
Simplify the expression
a2b−a2c+ac2−b2a+b2c−bc2
Evaluate
(a−b)(b−c)(a−c)
Multiply the terms
More Steps

Evaluate
(a−b)(b−c)
Apply the distributive property
ab−ac−b×b−(−bc)
Multiply the terms
ab−ac−b2−(−bc)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
ab−ac−b2+bc
(ab−ac−b2+bc)(a−c)
Apply the distributive property
aba−abc−aca−(−ac×c)−b2a−(−b2c)+bca−bc×c
Multiply the terms
a2b−abc−aca−(−ac×c)−b2a−(−b2c)+bca−bc×c
Multiply the terms
a2b−abc−a2c−(−ac×c)−b2a−(−b2c)+bca−bc×c
Multiply the terms
a2b−abc−a2c−(−ac2)−b2a−(−b2c)+bca−bc×c
Multiply the terms
a2b−abc−a2c−(−ac2)−b2a−(−b2c)+bca−bc2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
a2b−abc−a2c+ac2−b2a+b2c+bca−bc2
Add the terms
More Steps

Evaluate
−abc+bca
Rewrite the expression
−abc+abc
Collect like terms by calculating the sum or difference of their coefficients
(−1+1)abc
Add the numbers
0×abc
Any expression multiplied by 0 equals 0
0
a2b+0−a2c+ac2−b2a+b2c−bc2
Solution
a2b−a2c+ac2−b2a+b2c−bc2
Show Solution
