Question
Simplify the expression
−a2b−ac2+a2c−b2c+b2a+bc2
Evaluate
(a−b)(b−c)(c−a)
Multiply the terms
More Steps

Evaluate
(a−b)(b−c)
Apply the distributive property
ab−ac−b×b−(−bc)
Multiply the terms
ab−ac−b2−(−bc)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
ab−ac−b2+bc
(ab−ac−b2+bc)(c−a)
Apply the distributive property
abc−aba−ac×c−(−aca)−b2c−(−b2a)+bc×c−bca
Multiply the terms
abc−a2b−ac×c−(−aca)−b2c−(−b2a)+bc×c−bca
Multiply the terms
abc−a2b−ac2−(−aca)−b2c−(−b2a)+bc×c−bca
Multiply the terms
abc−a2b−ac2−(−a2c)−b2c−(−b2a)+bc×c−bca
Multiply the terms
abc−a2b−ac2−(−a2c)−b2c−(−b2a)+bc2−bca
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
abc−a2b−ac2+a2c−b2c+b2a+bc2−bca
Subtract the terms
More Steps

Evaluate
abc−bca
Rewrite the expression
abc−abc
Collect like terms by calculating the sum or difference of their coefficients
(1−1)abc
Subtract the numbers
0×abc
Any expression multiplied by 0 equals 0
0
0−a2b−ac2+a2c−b2c+b2a+bc2
Solution
−a2b−ac2+a2c−b2c+b2a+bc2
Show Solution
