Question
Simplify the expression
csc2(θ)
Evaluate
1×cos(θ)cot(θ)csc(θ)
Any expression multiplied by 1 remains the same
cos(θ)cot(θ)csc(θ)
Transform the expression
More Steps

Evaluate
cot(θ)csc(θ)
Use csct=sint1 to transform the expression
cot(θ)×sin(θ)1
Multiply the terms
sin(θ)cot(θ)
cos(θ)sin(θ)cot(θ)
Multiply by the reciprocal
sin(θ)cot(θ)×cos(θ)1
Multiply the terms
sin(θ)cos(θ)cot(θ)
Use cott=sintcost to transform the expression
sin(θ)cos(θ)sin(θ)cos(θ)
Multiply by the reciprocal
sin(θ)cos(θ)×sin(θ)cos(θ)1
Cancel out the common factor cos(θ)
sin(θ)1×sin(θ)1
Multiply the terms
sin(θ)sin(θ)1
Multiply the terms
sin2(θ)1
Rewrite the expression
sin2(θ)
Use sin−2t=1+tan2t to transform the expression
1+cot2(θ)
Use cot2t=csc2t−1 to transform the expression
1+csc2(θ)−1
Solution
csc2(θ)
Show Solution
