Question
Simplify the expression
700d5
Evaluate
d3d2×d5×d×7×100
Reduce the fraction
More Steps

Evaluate
d3d2×d5×d×7
Multiply
More Steps

Evaluate
d2×d5×d×7
Multiply the terms with the same base by adding their exponents
d2+5+1×7
Add the numbers
d8×7
d3d8×7
Reduce the fraction
More Steps

Calculate
d3d8
Use the product rule aman=an−m to simplify the expression
d8−3
Subtract the terms
d5
d5×7
d5×7×100
Use the commutative property to reorder the terms
7d5×100
Solution
700d5
Show Solution

Find the excluded values
d=0
Evaluate
d3d2×d5×d×7×100
To find the excluded values,set the denominators equal to 0
d3=0
Solution
d=0
Show Solution

Find the roots
d∈∅
Evaluate
d3d2×d5×d×7×100
To find the roots of the expression,set the expression equal to 0
d3d2×d5×d×7×100=0
The only way a power can not be 0 is when the base not equals 0
d3d2×d5×d×7×100=0,d=0
Calculate
d3d2×d5×d×7×100=0
Multiply
More Steps

Multiply the terms
d2×d5×d×7
Multiply the terms with the same base by adding their exponents
d2+5+1×7
Add the numbers
d8×7
Use the commutative property to reorder the terms
7d8
d37d8×100=0
Divide the terms
More Steps

Evaluate
d37d8
Use the product rule aman=an−m to simplify the expression
17d8−3
Simplify
7d8−3
Divide the terms
7d5
7d5×100=0
Multiply the numbers
700d5=0
Rewrite the expression
d5=0
The only way a power can be 0 is when the base equals 0
d=0
Check if the solution is in the defined range
d=0,d=0
Solution
d∈∅
Show Solution
