Question
Simplify the expression
ed5chg2−9ed4chg2+31ed3chg2−51ed2chg2+40edchg2−12echg2
Evaluate
(d−1)2(d−2)2(d−3)cheg×g
Multiply the terms
(d−1)2(d−2)2(d−3)cheg2
Use the commutative property to reorder the terms
e(d−1)2(d−2)2chg2(d−3)
Expand the expression
More Steps

Evaluate
(d−1)2
Use (a−b)2=a2−2ab+b2 to expand the expression
d2−2d×1+12
Calculate
d2−2d+1
e(d2−2d+1)(d−2)2chg2(d−3)
Expand the expression
More Steps

Evaluate
(d−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
d2−2d×2+22
Calculate
d2−4d+4
e(d2−2d+1)(d2−4d+4)chg2(d−3)
Multiply the terms
More Steps

Evaluate
e(d2−2d+1)
Apply the distributive property
ed2−e×2d+e×1
Use the commutative property to reorder the terms
ed2−2ed+e×1
Multiply the numbers
ed2−2ed+e
(ed2−2ed+e)(d2−4d+4)chg2(d−3)
Multiply the terms
More Steps

Evaluate
(ed2−2ed+e)(d2−4d+4)
Apply the distributive property
ed2×d2−ed2×4d+ed2×4−2ed×d2−(−2ed×4d)−2ed×4+ed2−e×4d+e×4
Multiply the terms
More Steps

Evaluate
d2×d2
Use the product rule an×am=an+m to simplify the expression
d2+2
Add the numbers
d4
ed4−ed2×4d+ed2×4−2ed×d2−(−2ed×4d)−2ed×4+ed2−e×4d+e×4
Multiply the terms
More Steps

Evaluate
ed2×4d
Multiply the numbers
4ed2×d
Multiply the terms
4ed3
ed4−4ed3+ed2×4−2ed×d2−(−2ed×4d)−2ed×4+ed2−e×4d+e×4
Use the commutative property to reorder the terms
ed4−4ed3+4ed2−2ed×d2−(−2ed×4d)−2ed×4+ed2−e×4d+e×4
Multiply the terms
More Steps

Evaluate
d×d2
Use the product rule an×am=an+m to simplify the expression
d1+2
Add the numbers
d3
ed4−4ed3+4ed2−2ed3−(−2ed×4d)−2ed×4+ed2−e×4d+e×4
Multiply the terms
More Steps

Evaluate
−2ed×4d
Multiply the numbers
−8ed×d
Multiply the terms
−8ed2
ed4−4ed3+4ed2−2ed3−(−8ed2)−2ed×4+ed2−e×4d+e×4
Multiply the numbers
ed4−4ed3+4ed2−2ed3−(−8ed2)−8ed+ed2−e×4d+e×4
Use the commutative property to reorder the terms
ed4−4ed3+4ed2−2ed3−(−8ed2)−8ed+ed2−4ed+e×4
Use the commutative property to reorder the terms
ed4−4ed3+4ed2−2ed3−(−8ed2)−8ed+ed2−4ed+4e
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
ed4−4ed3+4ed2−2ed3+8ed2−8ed+ed2−4ed+4e
Subtract the terms
More Steps

Evaluate
−4ed3−2ed3
Collect like terms by calculating the sum or difference of their coefficients
(−4−2)ed3
Subtract the numbers
−6ed3
ed4−6ed3+4ed2+8ed2−8ed+ed2−4ed+4e
Add the terms
More Steps

Evaluate
4ed2+8ed2+ed2
Collect like terms by calculating the sum or difference of their coefficients
(4+8+1)ed2
Add the numbers
13ed2
ed4−6ed3+13ed2−8ed−4ed+4e
Subtract the terms
More Steps

Evaluate
−8ed−4ed
Collect like terms by calculating the sum or difference of their coefficients
(−8−4)ed
Subtract the numbers
−12ed
ed4−6ed3+13ed2−12ed+4e
(ed4−6ed3+13ed2−12ed+4e)chg2(d−3)
Multiply the terms
(ed4c−6ed3c+13ed2c−12edc+4ec)hg2(d−3)
Multiply the terms
(ed4ch−6ed3ch+13ed2ch−12edch+4ech)g2(d−3)
Multiply the terms
(ed4chg2−6ed3chg2+13ed2chg2−12edchg2+4echg2)(d−3)
Apply the distributive property
ed4chg2d−ed4chg2×3−6ed3chg2d−(−6ed3chg2×3)+13ed2chg2d−13ed2chg2×3−12edchg2d−(−12edchg2×3)+4echg2d−4echg2×3
Multiply the terms
More Steps

Evaluate
d4×d
Use the product rule an×am=an+m to simplify the expression
d4+1
Add the numbers
d5
ed5chg2−ed4chg2×3−6ed3chg2d−(−6ed3chg2×3)+13ed2chg2d−13ed2chg2×3−12edchg2d−(−12edchg2×3)+4echg2d−4echg2×3
Use the commutative property to reorder the terms
ed5chg2−3ed4chg2−6ed3chg2d−(−6ed3chg2×3)+13ed2chg2d−13ed2chg2×3−12edchg2d−(−12edchg2×3)+4echg2d−4echg2×3
Multiply the terms
More Steps

Evaluate
d3×d
Use the product rule an×am=an+m to simplify the expression
d3+1
Add the numbers
d4
ed5chg2−3ed4chg2−6ed4chg2−(−6ed3chg2×3)+13ed2chg2d−13ed2chg2×3−12edchg2d−(−12edchg2×3)+4echg2d−4echg2×3
Multiply the numbers
ed5chg2−3ed4chg2−6ed4chg2−(−18ed3chg2)+13ed2chg2d−13ed2chg2×3−12edchg2d−(−12edchg2×3)+4echg2d−4echg2×3
Multiply the terms
More Steps

Evaluate
d2×d
Use the product rule an×am=an+m to simplify the expression
d2+1
Add the numbers
d3
ed5chg2−3ed4chg2−6ed4chg2−(−18ed3chg2)+13ed3chg2−13ed2chg2×3−12edchg2d−(−12edchg2×3)+4echg2d−4echg2×3
Multiply the numbers
ed5chg2−3ed4chg2−6ed4chg2−(−18ed3chg2)+13ed3chg2−39ed2chg2−12edchg2d−(−12edchg2×3)+4echg2d−4echg2×3
Multiply the terms
ed5chg2−3ed4chg2−6ed4chg2−(−18ed3chg2)+13ed3chg2−39ed2chg2−12ed2chg2−(−12edchg2×3)+4echg2d−4echg2×3
Multiply the numbers
ed5chg2−3ed4chg2−6ed4chg2−(−18ed3chg2)+13ed3chg2−39ed2chg2−12ed2chg2−(−36edchg2)+4echg2d−4echg2×3
Multiply the numbers
ed5chg2−3ed4chg2−6ed4chg2−(−18ed3chg2)+13ed3chg2−39ed2chg2−12ed2chg2−(−36edchg2)+4echg2d−12echg2
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
ed5chg2−3ed4chg2−6ed4chg2+18ed3chg2+13ed3chg2−39ed2chg2−12ed2chg2+36edchg2+4echg2d−12echg2
Subtract the terms
More Steps

Evaluate
−3ed4chg2−6ed4chg2
Collect like terms by calculating the sum or difference of their coefficients
(−3−6)ed4chg2
Subtract the numbers
−9ed4chg2
ed5chg2−9ed4chg2+18ed3chg2+13ed3chg2−39ed2chg2−12ed2chg2+36edchg2+4echg2d−12echg2
Add the terms
More Steps

Evaluate
18ed3chg2+13ed3chg2
Collect like terms by calculating the sum or difference of their coefficients
(18+13)ed3chg2
Add the numbers
31ed3chg2
ed5chg2−9ed4chg2+31ed3chg2−39ed2chg2−12ed2chg2+36edchg2+4echg2d−12echg2
Subtract the terms
More Steps

Evaluate
−39ed2chg2−12ed2chg2
Collect like terms by calculating the sum or difference of their coefficients
(−39−12)ed2chg2
Subtract the numbers
−51ed2chg2
ed5chg2−9ed4chg2+31ed3chg2−51ed2chg2+36edchg2+4echg2d−12echg2
Solution
More Steps

Evaluate
36edchg2+4echg2d
Rewrite the expression
36edchg2+4edchg2
Collect like terms by calculating the sum or difference of their coefficients
(36+4)edchg2
Add the numbers
40edchg2
ed5chg2−9ed4chg2+31ed3chg2−51ed2chg2+40edchg2−12echg2
Show Solution
