Question
Simplify the expression
e4x−2+e−4x
Evaluate
(e2x−e−2x)2
Solution
More Steps

Use the the distributive property to expand the expression
e2x×e2x+e2x(−e−2x)−e−2x×e2x−e−2x(−e−2x)
Multiply the terms
More Steps

Evaluate
e2x×e2x
Multiply the terms with the same base by adding their exponents
e2x+2x
Calculate
e4x
e4x+e2x(−e−2x)−e−2x×e2x−e−2x(−e−2x)
Multiply the terms
More Steps

Evaluate
e2x(−e−2x)
Multiply the terms with the same base by adding their exponents
−e2x−2x
Calculate
−e0
Calculate
−1
e4x−1−e−2x×e2x−e−2x(−e−2x)
Multiply the terms
More Steps

Evaluate
−e−2x×e2x
Multiply the terms with the same base by adding their exponents
−e−2x+2x
Calculate
−e0
Calculate
−1
e4x−1−1−e−2x(−e−2x)
Multiply the terms
More Steps

Evaluate
−e−2x(−e−2x)
Multiply the terms with the same base by adding their exponents
e−2x−2x
Calculate
e−4x
e4x−1−1+e−4x
Calculate
e4x−2+e−4x
e4x−2+e−4x
Show Solution

Find the roots
x=0
Evaluate
(e2x−e−2x)2
To find the roots of the expression,set the expression equal to 0
(e2x−e−2x)2=0
The only way a power can be 0 is when the base equals 0
e2x−e−2x=0
Factor the expression
More Steps

Factor the expression
e2x−e−2x
Evaluate
(ex)2−(ex)−2
Rewrite the expression
(ex)−2(ex)4−(ex)−2
Factor out (ex)−2 from the expression
(ex)−2((ex)4−1)
Use a2−b2=(a−b)(a+b) to factor the expression
(ex)−2((ex)2−1)((ex)2+1)
Use a2−b2=(a−b)(a+b) to factor the expression
(ex)−2(ex−1)(ex+1)((ex)2+1)
Factor the expression
(ex−1)(ex+1)(e2x+1)(ex)−2
(ex−1)(ex+1)(e2x+1)(ex)−2=0
Rewrite the expression
(ex)2e4x−1=0
Cross multiply
e4x−1=(ex)2×0
Simplify the equation
e4x−1=0
Move the expression to the right side
e4x=1
Write the number in exponential form with the base of e
e4x=e0
Since the bases are the same,set the exponents equal
4x=0
Solution
x=0
Show Solution
