Question
Simplify the expression
−486g9+405g5+24g+432g4+24
Evaluate
(g3×9g2−8g−8)(−6g3×9g−3)
Multiply
More Steps

Multiply the terms
g3×9g2
Multiply the terms with the same base by adding their exponents
g3+2×9
Add the numbers
g5×9
Use the commutative property to reorder the terms
9g5
(9g5−8g−8)(−6g3×9g−3)
Multiply
More Steps

Multiply the terms
−6g3×9g
Multiply the terms
−54g3×g
Multiply the terms with the same base by adding their exponents
−54g3+1
Add the numbers
−54g4
(9g5−8g−8)(−54g4−3)
Apply the distributive property
9g5(−54g4)−9g5×3−8g(−54g4)−(−8g×3)−8(−54g4)−(−8×3)
Multiply the terms
More Steps

Evaluate
9g5(−54g4)
Multiply the numbers
More Steps

Evaluate
9(−54)
Multiplying or dividing an odd number of negative terms equals a negative
−9×54
Multiply the numbers
−486
−486g5×g4
Multiply the terms
More Steps

Evaluate
g5×g4
Use the product rule an×am=an+m to simplify the expression
g5+4
Add the numbers
g9
−486g9
−486g9−9g5×3−8g(−54g4)−(−8g×3)−8(−54g4)−(−8×3)
Multiply the numbers
−486g9−27g5−8g(−54g4)−(−8g×3)−8(−54g4)−(−8×3)
Multiply the terms
More Steps

Evaluate
−8g(−54g4)
Multiply the numbers
More Steps

Evaluate
−8(−54)
Multiplying or dividing an even number of negative terms equals a positive
8×54
Multiply the numbers
432
432g×g4
Multiply the terms
More Steps

Evaluate
g×g4
Use the product rule an×am=an+m to simplify the expression
g1+4
Add the numbers
g5
432g5
−486g9−27g5+432g5−(−8g×3)−8(−54g4)−(−8×3)
Multiply the numbers
−486g9−27g5+432g5−(−24g)−8(−54g4)−(−8×3)
Multiply the numbers
More Steps

Evaluate
−8(−54)
Multiplying or dividing an even number of negative terms equals a positive
8×54
Multiply the numbers
432
−486g9−27g5+432g5−(−24g)+432g4−(−8×3)
Multiply the numbers
−486g9−27g5+432g5−(−24g)+432g4−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−486g9−27g5+432g5+24g+432g4+24
Solution
More Steps

Evaluate
−27g5+432g5
Collect like terms by calculating the sum or difference of their coefficients
(−27+432)g5
Add the numbers
405g5
−486g9+405g5+24g+432g4+24
Show Solution

Factor the expression
−3(9g5−8g−8)(18g4+1)
Evaluate
(g3×9g2−8g−8)(−6g3×9g−3)
Multiply
More Steps

Multiply the terms
g3×9g2
Multiply the terms with the same base by adding their exponents
g3+2×9
Add the numbers
g5×9
Use the commutative property to reorder the terms
9g5
(9g5−8g−8)(−6g3×9g−3)
Multiply
More Steps

Multiply the terms
−6g3×9g
Multiply the terms
−54g3×g
Multiply the terms with the same base by adding their exponents
−54g3+1
Add the numbers
−54g4
(9g5−8g−8)(−54g4−3)
Factor the expression
(9g5−8g−8)(−3)(18g4+1)
Solution
−3(9g5−8g−8)(18g4+1)
Show Solution
