Question
Simplify the expression
2g3−7g2+3g+6
Evaluate
(g−2)(2g2−3g−3)
Apply the distributive property
g×2g2−g×3g−g×3−2×2g2−(−2×3g)−(−2×3)
Multiply the terms
More Steps

Evaluate
g×2g2
Use the commutative property to reorder the terms
2g×g2
Multiply the terms
More Steps

Evaluate
g×g2
Use the product rule an×am=an+m to simplify the expression
g1+2
Add the numbers
g3
2g3
2g3−g×3g−g×3−2×2g2−(−2×3g)−(−2×3)
Multiply the terms
More Steps

Evaluate
g×3g
Use the commutative property to reorder the terms
3g×g
Multiply the terms
3g2
2g3−3g2−g×3−2×2g2−(−2×3g)−(−2×3)
Use the commutative property to reorder the terms
2g3−3g2−3g−2×2g2−(−2×3g)−(−2×3)
Multiply the numbers
2g3−3g2−3g−4g2−(−2×3g)−(−2×3)
Multiply the numbers
2g3−3g2−3g−4g2−(−6g)−(−2×3)
Multiply the numbers
2g3−3g2−3g−4g2−(−6g)−(−6)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
2g3−3g2−3g−4g2+6g+6
Subtract the terms
More Steps

Evaluate
−3g2−4g2
Collect like terms by calculating the sum or difference of their coefficients
(−3−4)g2
Subtract the numbers
−7g2
2g3−7g2−3g+6g+6
Solution
More Steps

Evaluate
−3g+6g
Collect like terms by calculating the sum or difference of their coefficients
(−3+6)g
Add the numbers
3g
2g3−7g2+3g+6
Show Solution

Find the roots
g1=43−33,g2=2,g3=43+33
Alternative Form
g1≈−0.686141,g2=2,g3≈2.186141
Evaluate
(g−2)(2g2−3g−3)
To find the roots of the expression,set the expression equal to 0
(g−2)(2g2−3g−3)=0
Separate the equation into 2 possible cases
g−2=02g2−3g−3=0
Solve the equation
More Steps

Evaluate
g−2=0
Move the constant to the right-hand side and change its sign
g=0+2
Removing 0 doesn't change the value,so remove it from the expression
g=2
g=22g2−3g−3=0
Solve the equation
More Steps

Evaluate
2g2−3g−3=0
Substitute a=2,b=−3 and c=−3 into the quadratic formula g=2a−b±b2−4ac
g=2×23±(−3)2−4×2(−3)
Simplify the expression
g=43±(−3)2−4×2(−3)
Simplify the expression
More Steps

Evaluate
(−3)2−4×2(−3)
Multiply
(−3)2−(−24)
Rewrite the expression
32−(−24)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
32+24
Evaluate the power
9+24
Add the numbers
33
g=43±33
Separate the equation into 2 possible cases
g=43+33g=43−33
g=2g=43+33g=43−33
Solution
g1=43−33,g2=2,g3=43+33
Alternative Form
g1≈−0.686141,g2=2,g3≈2.186141
Show Solution
