Question
Simplify the expression
27k4−81k3
Evaluate
(k−3)(k2×3k×9)
Remove the parentheses
(k−3)k2×3k×9
Multiply the terms with the same base by adding their exponents
(k−3)k2+1×3×9
Add the numbers
(k−3)k3×3×9
Multiply the terms
(k−3)k3×27
Use the commutative property to reorder the terms
(k−3)×27k3
Multiply the terms
27k3(k−3)
Apply the distributive property
27k3×k−27k3×3
Multiply the terms
More Steps

Evaluate
k3×k
Use the product rule an×am=an+m to simplify the expression
k3+1
Add the numbers
k4
27k4−27k3×3
Solution
27k4−81k3
Show Solution

Find the roots
k1=0,k2=3
Evaluate
(k−3)(k2×3k×9)
To find the roots of the expression,set the expression equal to 0
(k−3)(k2×3k×9)=0
Multiply
More Steps

Multiply the terms
k2×3k×9
Multiply the terms with the same base by adding their exponents
k2+1×3×9
Add the numbers
k3×3×9
Multiply the terms
k3×27
Use the commutative property to reorder the terms
27k3
(k−3)×27k3=0
Multiply the terms
27k3(k−3)=0
Elimination the left coefficient
k3(k−3)=0
Separate the equation into 2 possible cases
k3=0k−3=0
The only way a power can be 0 is when the base equals 0
k=0k−3=0
Solve the equation
More Steps

Evaluate
k−3=0
Move the constant to the right-hand side and change its sign
k=0+3
Removing 0 doesn't change the value,so remove it from the expression
k=3
k=0k=3
Solution
k1=0,k2=3
Show Solution
