Question
Simplify the expression
2069k−78
Evaluate
(k−78)−(−57k×47)
Remove the parentheses
k−78−(−57k×47)
Multiply the terms
More Steps

Multiply the terms
−57k×47
Multiply the terms
More Steps

Evaluate
57×47
To multiply the fractions,multiply the numerators and denominators separately
5×47×7
Multiply the numbers
5×449
Multiply the numbers
2049
−2049k
k−78−(−2049k)
Rewrite the expression
k−78+2049k
Solution
More Steps

Evaluate
k+2049k
Collect like terms by calculating the sum or difference of their coefficients
(1+2049)k
Add the numbers
More Steps

Evaluate
1+2049
Reduce fractions to a common denominator
2020+2049
Write all numerators above the common denominator
2020+49
Add the numbers
2069
2069k
2069k−78
Show Solution

Factor the expression
1401(483k−160)
Evaluate
(k−78)−(−57k×47)
Remove the parentheses
k−78−(−57k×47)
Multiply the terms
More Steps

Multiply the terms
57k×47
Multiply the terms
More Steps

Evaluate
57×47
To multiply the fractions,multiply the numerators and denominators separately
5×47×7
Multiply the numbers
5×449
Multiply the numbers
2049
2049k
k−78−(−2049k)
Rewrite the expression
k−78+2049k
Add the terms
More Steps

Evaluate
k+2049k
Collect like terms by calculating the sum or difference of their coefficients
(1+2049)k
Add the numbers
More Steps

Evaluate
1+2049
Reduce fractions to a common denominator
2020+2049
Write all numerators above the common denominator
2020+49
Add the numbers
2069
2069k
2069k−78
Solution
1401(483k−160)
Show Solution

Find the roots
k=483160
Alternative Form
k≈0.331263
Evaluate
(k−78)−(−57k×47)
To find the roots of the expression,set the expression equal to 0
(k−78)−(−57k×47)=0
Remove the parentheses
k−78−(−57k×47)=0
Multiply the terms
More Steps

Multiply the terms
57k×47
Multiply the terms
More Steps

Evaluate
57×47
To multiply the fractions,multiply the numerators and denominators separately
5×47×7
Multiply the numbers
5×449
Multiply the numbers
2049
2049k
k−78−(−2049k)=0
Subtract the terms
More Steps

Simplify
k−78−(−2049k)
Rewrite the expression
k−78+2049k
Add the terms
More Steps

Evaluate
k+2049k
Collect like terms by calculating the sum or difference of their coefficients
(1+2049)k
Add the numbers
2069k
2069k−78
2069k−78=0
Move the constant to the right-hand side and change its sign
2069k=0+78
Add the terms
2069k=78
Multiply by the reciprocal
2069k×6920=78×6920
Multiply
k=78×6920
Solution
More Steps

Evaluate
78×6920
To multiply the fractions,multiply the numerators and denominators separately
7×698×20
Multiply the numbers
7×69160
Multiply the numbers
483160
k=483160
Alternative Form
k≈0.331263
Show Solution
