Question
Simplify the expression
15572l3o3g3
Evaluate
6(log×10×1×51log×10×511×51log×10×513×1)
Remove the parentheses
6log×10×1×51log×10×511×51log×10×513×1
Rewrite the expression in exponential form
6l3o3g3×103×1×51×511×51×513×1
Any expression multiplied by 1 remains the same
6l3o3g3×103×51×511×51×513
Multiply the terms
More Steps

Evaluate
51×511×51×513
Multiply the terms
More Steps

Evaluate
51×511
To multiply the fractions,multiply the numerators and denominators separately
5×511
Multiply the numbers
2511
2511×51×513
Multiply the terms
More Steps

Evaluate
2511×51
To multiply the fractions,multiply the numerators and denominators separately
25×511
Multiply the numbers
12511
12511×513
To multiply the fractions,multiply the numerators and denominators separately
125×511×13
Multiply the numbers
125×5143
Multiply the numbers
625143
6l3o3g3×103×625143
Factor the expression
More Steps

Calculate
103
Rewrite the expression
(2×5)3
Rewrite the expression
23×53
6l3o3g3×23×53×625143
Factor the expression
2×3l3o3g3×23×53×625143
Reduce the fraction
More Steps

Calculate
223
Use the product rule aman=an−m to simplify the expression
23−1
Subtract the terms
22
3l3o3g3×22×53×625143
Simplify
More Steps

Evaluate
l3o3g3×22×53×625143
Use the commutative property to reorder the terms
22l3o3g3×53×625143
Multiply the numbers
More Steps

Evaluate
22×53
Expand the expression
4×53
Expand the expression
4×125
Multiply the numbers
500
500l3o3g3×625143
Multiply the numbers
More Steps

Evaluate
500×625143
Reduce the numbers
4×5143
Multiply the numbers
54×143
Multiply the numbers
5572
5572l3o3g3
35572l3o3g3
Rewrite the expression
35572l3o3g3
Multiply by the reciprocal
5572l3o3g3×31
Multiply the terms
5×3572l3o3g3
Solution
15572l3o3g3
Show Solution
