Question
Simplify the expression
128m6n2−256m4n4+128n6m2
Evaluate
(m2−n2)2×8m2n2×16
Multiply the terms
(m2−n2)2×128m2n2
Use the commutative property to reorder the terms
128(m2−n2)2m2n2
Expand the expression
More Steps

Evaluate
(m2−n2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
(m2)2−2m2n2+(n2)2
Calculate
m4−2m2n2+n4
128(m4−2m2n2+n4)m2n2
Multiply the terms
More Steps

Evaluate
128(m4−2m2n2+n4)
Apply the distributive property
128m4−128×2m2n2+128n4
Multiply the numbers
128m4−256m2n2+128n4
(128m4−256m2n2+128n4)m2n2
Multiply the terms
More Steps

Evaluate
(128m4−256m2n2+128n4)m2
Apply the distributive property
128m4×m2−256m2n2m2+128n4m2
Multiply the terms
More Steps

Evaluate
m4×m2
Use the product rule an×am=an+m to simplify the expression
m4+2
Add the numbers
m6
128m6−256m2n2m2+128n4m2
Multiply the terms
More Steps

Evaluate
m2×m2
Use the product rule an×am=an+m to simplify the expression
m2+2
Add the numbers
m4
128m6−256m4n2+128n4m2
(128m6−256m4n2+128n4m2)n2
Apply the distributive property
128m6n2−256m4n2×n2+128n4m2n2
Multiply the terms
More Steps

Evaluate
n2×n2
Use the product rule an×am=an+m to simplify the expression
n2+2
Add the numbers
n4
128m6n2−256m4n4+128n4m2n2
Solution
More Steps

Evaluate
n4×n2
Use the product rule an×am=an+m to simplify the expression
n4+2
Add the numbers
n6
128m6n2−256m4n4+128n6m2
Show Solution

Factor the expression
128m2n2(m+n)2(m−n)2
Evaluate
(m2−n2)2×8m2n2×16
Multiply the terms
(m2−n2)2×128m2n2
Use the commutative property to reorder the terms
128(m2−n2)2m2n2
Factor the expression
More Steps

Evaluate
(m2−n2)2
Use a2−b2=(a−b)(a+b) to factor the expression
((m+n)(m−n))2
Evaluate the power
(m+n)2(m−n)2
128(m+n)2(m−n)2m2n2
Solution
128m2n2(m+n)2(m−n)2
Show Solution
