Question
Simplify the expression
m2+l6t2+4−2ml3t−4m+4l3t1
Evaluate
(m−1×l3t−2)−2
Calculate
(m−l3t−2)−2
Express with a positive exponent using a−n=an1
(m−l3t−2)21
Solution
More Steps

Evaluate
(m−l3t−2)2
Use (a+b+c)2=a2+b2+c2+2ab+2ac+2bc to expand the expression
m2+(−l3t)2+(−2)2+2m(−l3t)+2m(−2)+2(−l3t)(−2)
Calculate
More Steps

Evaluate
(−l3t)2
Determine the sign
(l3t)2
To raise a product to a power,raise each factor to that power
(l3)2t2
Evaluate the power
l6t2
m2+l6t2+(−2)2+2m(−l3t)+2m(−2)+2(−l3t)(−2)
Calculate
m2+l6t2+4+2m(−l3t)+2m(−2)+2(−l3t)(−2)
Multiply the numbers
m2+l6t2+4−2ml3t+2m(−2)+2(−l3t)(−2)
Calculate
More Steps

Evaluate
2(−2)
Multiplying or dividing an odd number of negative terms equals a negative
−2×2
Multiply the numbers
−4
m2+l6t2+4−2ml3t−4m+2(−l3t)(−2)
Calculate
More Steps

Evaluate
2(−l3t)(−2)
Multiply the numbers
−2l3t(−2)
Multiply the numbers
4l3t
m2+l6t2+4−2ml3t−4m+4l3t
m2+l6t2+4−2ml3t−4m+4l3t1
Show Solution
