Question
Simplify the expression
n7−9n6+34n5−70n4+85n3−61n2+24n−4
Evaluate
(n−1)2(n−1)3(n−2)2
Multiply the terms with the same base by adding their exponents
(n−1)2+3(n−2)2
Add the numbers
(n−1)5(n−2)2
Expand the expression
(n5−5n4+10n3−10n2+5n−1)(n−2)2
Expand the expression
More Steps

Evaluate
(n−2)2
Use (a−b)2=a2−2ab+b2 to expand the expression
n2−2n×2+22
Calculate
n2−4n+4
(n5−5n4+10n3−10n2+5n−1)(n2−4n+4)
Apply the distributive property
n5×n2−n5×4n+n5×4−5n4×n2−(−5n4×4n)−5n4×4+10n3×n2−10n3×4n+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
n5×n2
Use the product rule an×am=an+m to simplify the expression
n5+2
Add the numbers
n7
n7−n5×4n+n5×4−5n4×n2−(−5n4×4n)−5n4×4+10n3×n2−10n3×4n+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
n5×4n
Use the commutative property to reorder the terms
4n5×n
Multiply the terms
More Steps

Evaluate
n5×n
Use the product rule an×am=an+m to simplify the expression
n5+1
Add the numbers
n6
4n6
n7−4n6+n5×4−5n4×n2−(−5n4×4n)−5n4×4+10n3×n2−10n3×4n+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Use the commutative property to reorder the terms
n7−4n6+4n5−5n4×n2−(−5n4×4n)−5n4×4+10n3×n2−10n3×4n+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
n4×n2
Use the product rule an×am=an+m to simplify the expression
n4+2
Add the numbers
n6
n7−4n6+4n5−5n6−(−5n4×4n)−5n4×4+10n3×n2−10n3×4n+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
−5n4×4n
Multiply the numbers
−20n4×n
Multiply the terms
More Steps

Evaluate
n4×n
Use the product rule an×am=an+m to simplify the expression
n4+1
Add the numbers
n5
−20n5
n7−4n6+4n5−5n6−(−20n5)−5n4×4+10n3×n2−10n3×4n+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the numbers
n7−4n6+4n5−5n6−(−20n5)−20n4+10n3×n2−10n3×4n+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
n3×n2
Use the product rule an×am=an+m to simplify the expression
n3+2
Add the numbers
n5
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−10n3×4n+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
10n3×4n
Multiply the numbers
40n3×n
Multiply the terms
More Steps

Evaluate
n3×n
Use the product rule an×am=an+m to simplify the expression
n3+1
Add the numbers
n4
40n4
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−40n4+10n3×4−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the numbers
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−40n4+40n3−10n2×n2−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
n2×n2
Use the product rule an×am=an+m to simplify the expression
n2+2
Add the numbers
n4
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−40n4+40n3−10n4−(−10n2×4n)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
−10n2×4n
Multiply the numbers
−40n2×n
Multiply the terms
More Steps

Evaluate
n2×n
Use the product rule an×am=an+m to simplify the expression
n2+1
Add the numbers
n3
−40n3
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−40n4+40n3−10n4−(−40n3)−10n2×4+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the numbers
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−40n4+40n3−10n4−(−40n3)−40n2+5n×n2−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
n×n2
Use the product rule an×am=an+m to simplify the expression
n1+2
Add the numbers
n3
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−40n4+40n3−10n4−(−40n3)−40n2+5n3−5n×4n+5n×4−n2−(−4n)−4
Multiply the terms
More Steps

Evaluate
5n×4n
Multiply the numbers
20n×n
Multiply the terms
20n2
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−40n4+40n3−10n4−(−40n3)−40n2+5n3−20n2+5n×4−n2−(−4n)−4
Multiply the numbers
n7−4n6+4n5−5n6−(−20n5)−20n4+10n5−40n4+40n3−10n4−(−40n3)−40n2+5n3−20n2+20n−n2−(−4n)−4
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
n7−4n6+4n5−5n6+20n5−20n4+10n5−40n4+40n3−10n4+40n3−40n2+5n3−20n2+20n−n2+4n−4
Subtract the terms
More Steps

Evaluate
−4n6−5n6
Collect like terms by calculating the sum or difference of their coefficients
(−4−5)n6
Subtract the numbers
−9n6
n7−9n6+4n5+20n5−20n4+10n5−40n4+40n3−10n4+40n3−40n2+5n3−20n2+20n−n2+4n−4
Add the terms
More Steps

Evaluate
4n5+20n5+10n5
Collect like terms by calculating the sum or difference of their coefficients
(4+20+10)n5
Add the numbers
34n5
n7−9n6+34n5−20n4−40n4+40n3−10n4+40n3−40n2+5n3−20n2+20n−n2+4n−4
Subtract the terms
More Steps

Evaluate
−20n4−40n4−10n4
Collect like terms by calculating the sum or difference of their coefficients
(−20−40−10)n4
Subtract the numbers
−70n4
n7−9n6+34n5−70n4+40n3+40n3−40n2+5n3−20n2+20n−n2+4n−4
Add the terms
More Steps

Evaluate
40n3+40n3+5n3
Collect like terms by calculating the sum or difference of their coefficients
(40+40+5)n3
Add the numbers
85n3
n7−9n6+34n5−70n4+85n3−40n2−20n2+20n−n2+4n−4
Subtract the terms
More Steps

Evaluate
−40n2−20n2−n2
Collect like terms by calculating the sum or difference of their coefficients
(−40−20−1)n2
Subtract the numbers
−61n2
n7−9n6+34n5−70n4+85n3−61n2+20n+4n−4
Solution
More Steps

Evaluate
20n+4n
Collect like terms by calculating the sum or difference of their coefficients
(20+4)n
Add the numbers
24n
n7−9n6+34n5−70n4+85n3−61n2+24n−4
Show Solution

Find the roots
n1=1,n2=2
Evaluate
(n−1)2(n−1)3(n−2)2
To find the roots of the expression,set the expression equal to 0
(n−1)2(n−1)3(n−2)2=0
Multiply
More Steps

Multiply the terms
(n−1)2(n−1)3(n−2)2
Multiply the terms with the same base by adding their exponents
(n−1)2+3(n−2)2
Add the numbers
(n−1)5(n−2)2
(n−1)5(n−2)2=0
Separate the equation into 2 possible cases
(n−1)5=0(n−2)2=0
Solve the equation
More Steps

Evaluate
(n−1)5=0
The only way a power can be 0 is when the base equals 0
n−1=0
Move the constant to the right-hand side and change its sign
n=0+1
Removing 0 doesn't change the value,so remove it from the expression
n=1
n=1(n−2)2=0
Solve the equation
More Steps

Evaluate
(n−2)2=0
The only way a power can be 0 is when the base equals 0
n−2=0
Move the constant to the right-hand side and change its sign
n=0+2
Removing 0 doesn't change the value,so remove it from the expression
n=2
n=1n=2
Solution
n1=1,n2=2
Show Solution
