Question
Simplify the expression
n3−6033n2+12132362n−8132725320
Evaluate
(n−2010)(n−2011)(n−2012)
Multiply the terms
More Steps

Evaluate
(n−2010)(n−2011)
Apply the distributive property
n×n−n×2011−2010n−(−2010×2011)
Multiply the terms
n2−n×2011−2010n−(−2010×2011)
Use the commutative property to reorder the terms
n2−2011n−2010n−(−2010×2011)
Multiply the numbers
n2−2011n−2010n−(−4042110)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
n2−2011n−2010n+4042110
Subtract the terms
More Steps

Evaluate
−2011n−2010n
Collect like terms by calculating the sum or difference of their coefficients
(−2011−2010)n
Subtract the numbers
−4021n
n2−4021n+4042110
(n2−4021n+4042110)(n−2012)
Apply the distributive property
n2×n−n2×2012−4021n×n−(−4021n×2012)+4042110n−4042110×2012
Multiply the terms
More Steps

Evaluate
n2×n
Use the product rule an×am=an+m to simplify the expression
n2+1
Add the numbers
n3
n3−n2×2012−4021n×n−(−4021n×2012)+4042110n−4042110×2012
Use the commutative property to reorder the terms
n3−2012n2−4021n×n−(−4021n×2012)+4042110n−4042110×2012
Multiply the terms
n3−2012n2−4021n2−(−4021n×2012)+4042110n−4042110×2012
Multiply the numbers
n3−2012n2−4021n2−(−8090252n)+4042110n−4042110×2012
Multiply the numbers
n3−2012n2−4021n2−(−8090252n)+4042110n−8132725320
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
n3−2012n2−4021n2+8090252n+4042110n−8132725320
Subtract the terms
More Steps

Evaluate
−2012n2−4021n2
Collect like terms by calculating the sum or difference of their coefficients
(−2012−4021)n2
Subtract the numbers
−6033n2
n3−6033n2+8090252n+4042110n−8132725320
Solution
More Steps

Evaluate
8090252n+4042110n
Collect like terms by calculating the sum or difference of their coefficients
(8090252+4042110)n
Add the numbers
12132362n
n3−6033n2+12132362n−8132725320
Show Solution

Find the roots
n1=2010,n2=2011,n3=2012
Evaluate
(n−2010)(n−2011)(n−2012)
To find the roots of the expression,set the expression equal to 0
(n−2010)(n−2011)(n−2012)=0
Separate the equation into 3 possible cases
n−2010=0n−2011=0n−2012=0
Solve the equation
More Steps

Evaluate
n−2010=0
Move the constant to the right-hand side and change its sign
n=0+2010
Removing 0 doesn't change the value,so remove it from the expression
n=2010
n=2010n−2011=0n−2012=0
Solve the equation
More Steps

Evaluate
n−2011=0
Move the constant to the right-hand side and change its sign
n=0+2011
Removing 0 doesn't change the value,so remove it from the expression
n=2011
n=2010n=2011n−2012=0
Solve the equation
More Steps

Evaluate
n−2012=0
Move the constant to the right-hand side and change its sign
n=0+2012
Removing 0 doesn't change the value,so remove it from the expression
n=2012
n=2010n=2011n=2012
Solution
n1=2010,n2=2011,n3=2012
Show Solution
