Question
Simplify the expression
16p2q2−2p2+16q2
Evaluate
(p2×8q2)×2−(p2−8q2)×2
Remove the parentheses
p2×8q2×2−(p2−8q2)×2
Multiply
More Steps

Multiply the terms
p2×8q2×2
Multiply the terms
p2×16q2
Use the commutative property to reorder the terms
16p2q2
16p2q2−(p2−8q2)×2
Multiply the terms
16p2q2−2(p2−8q2)
Solution
More Steps

Evaluate
−2(p2−8q2)
Apply the distributive property
−2p2−(−2×8q2)
Multiply the numbers
−2p2−(−16q2)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−2p2+16q2
16p2q2−2p2+16q2
Show Solution

Factor the expression
2(8p2q2−p2+8q2)
Evaluate
(p2×8q2)×2−(p2−8q2)×2
Remove the parentheses
p2×8q2×2−(p2−8q2)×2
Use the commutative property to reorder the terms
8p2q2×2−(p2−8q2)×2
Multiply the numbers
More Steps

Evaluate
8×2
Multiply the numbers
16
Evaluate
16p2q2
16p2q2−(p2−8q2)×2
Multiply the terms
16p2q2−2(p2−8q2)
Simplify
More Steps

Evaluate
−2(p2−8q2)
Apply the distributive property
−2p2−2(−8q2)
Multiply the terms
More Steps

Evaluate
−2(−8)
Multiplying or dividing an even number of negative terms equals a positive
2×8
Multiply the numbers
16
−2p2+16q2
16p2q2−2p2+16q2
Solution
2(8p2q2−p2+8q2)
Show Solution
