Question Solve the equation x=arctan(1.213412)+kπ,k∈ZAlternative Form x≈0.881519+kπ,k∈ZAlternative Form x≈50.507293∘+180∘k,k∈Z Evaluate sec2(x)tan(x)=3Find the domain sec2(x)tan(x)=3,x=2π+kπ,k∈ZUse sec2(x)=tan2(x)+1 to rewrite the expression tan3(x)+tan(x)=3Move the expression to the left side tan3(x)+tan(x)−3=0Calculate tan(x)≈1.213412Use the inverse trigonometric function x=arctan(1.213412)Add the period of kπ,k∈Z to find all solutions x=arctan(1.213412)+kπ,k∈ZCheck if the solution is in the defined range x=arctan(1.213412)+kπ,k∈Z,x=2π+kπ,k∈ZSolution x=arctan(1.213412)+kπ,k∈ZAlternative Form x≈0.881519+kπ,k∈ZAlternative Form x≈50.507293∘+180∘k,k∈Z Show Solution Graph