Question
Simplify the expression
79652w2−20
Evaluate
w×14815×4w×171×19−20
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
14815
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
814×8+15
Multiply the terms
8112+15
Add the terms
8127
w×8127×4w×171×19−20
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
171
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
77+1
Add the terms
78
w×8127×4w×78×19−20
Solution
More Steps

Multiply the terms
w×8127×4w×78×19
Multiply the terms
w2×8127×4×78×19
Multiply the terms
More Steps

Evaluate
8127×4×78×19
Reduce the fraction
127×4×71×19
Multiply the terms
508×71×19
Multiply the terms
7508×19
Multiply the numbers
7508×19
Multiply the numbers
79652
w2×79652
Use the commutative property to reorder the terms
79652w2
79652w2−20
Show Solution

Factor the expression
74(2413w2−35)
Evaluate
w×14815×4w×171×19−20
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
14815
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
814×8+15
Multiply the terms
8112+15
Add the terms
8127
w×8127×4w×171×19−20
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
171
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
77+1
Add the terms
78
w×8127×4w×78×19−20
Multiply
More Steps

Multiply the terms
w×8127×4w×78×19
Multiply the terms
w2×8127×4×78×19
Multiply the terms
More Steps

Evaluate
8127×4×78×19
Reduce the fraction
127×4×71×19
Multiply the terms
508×71×19
Multiply the terms
7508×19
Multiply the numbers
7508×19
Multiply the numbers
79652
w2×79652
Use the commutative property to reorder the terms
79652w2
79652w2−20
Solution
74(2413w2−35)
Show Solution

Find the roots
w1=−241384455,w2=241384455
Alternative Form
w1≈−0.120436,w2≈0.120436
Evaluate
(w×14815×4w×171×19−20)
To find the roots of the expression,set the expression equal to 0
w×14815×4w×171×19−20=0
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
14815
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
814×8+15
Multiply the terms
8112+15
Add the terms
8127
w×8127×4w×171×19−20=0
Covert the mixed number to an improper fraction
More Steps

Convert the expressions
171
Multiply the denominator of the fraction by the whole number and add the numerator of the fraction
77+1
Add the terms
78
w×8127×4w×78×19−20=0
Multiply
More Steps

Multiply the terms
w×8127×4w×78×19
Multiply the terms
w2×8127×4×78×19
Multiply the terms
More Steps

Evaluate
8127×4×78×19
Reduce the fraction
127×4×71×19
Multiply the terms
508×71×19
Multiply the terms
7508×19
Multiply the numbers
7508×19
Multiply the numbers
79652
w2×79652
Use the commutative property to reorder the terms
79652w2
79652w2−20=0
Move the constant to the right-hand side and change its sign
79652w2=0+20
Removing 0 doesn't change the value,so remove it from the expression
79652w2=20
Multiply by the reciprocal
79652w2×96527=20×96527
Multiply
w2=20×96527
Multiply
More Steps

Evaluate
20×96527
Reduce the numbers
5×24137
Multiply the numbers
24135×7
Multiply the numbers
241335
w2=241335
Take the root of both sides of the equation and remember to use both positive and negative roots
w=±241335
Simplify the expression
More Steps

Evaluate
241335
To take a root of a fraction,take the root of the numerator and denominator separately
241335
Multiply by the Conjugate
2413×241335×2413
Multiply the numbers
More Steps

Evaluate
35×2413
The product of roots with the same index is equal to the root of the product
35×2413
Calculate the product
84455
2413×241384455
When a square root of an expression is multiplied by itself,the result is that expression
241384455
w=±241384455
Separate the equation into 2 possible cases
w=241384455w=−241384455
Solution
w1=−241384455,w2=241384455
Alternative Form
w1≈−0.120436,w2≈0.120436
Show Solution
