Question
Simplify the expression
−4x+x2+3
Evaluate
(2i−3i)1x(4−x)i−3i
Remove the parentheses
2i−3i1x(4−x)i−3i
Use the commutative property to reorder the terms
2i−3i1ix(4−x)−3i
Expand the expression
More Steps

Simplify
ix(4−x)−3i
Expand the expression
More Steps

Evaluate
ix(4−x)
Apply the distributive property
ix×4−ix×x
Multiply the numbers
4ix−ix×x
Multiply the terms
4ix−ix2
4ix−ix2−3i
2i−3i14ix−ix2−3i
Divide the terms
2i−3i4ix−ix2−3i
Subtract the numbers
More Steps

Simplify
2i−3i
Collect like terms
(2−3)i
Calculate
−i
−i4ix−ix2−3i
Use b−a=−ba=−ba to rewrite the fraction
−i4ix−ix2−3i
Multiply numerator and denominator by conjugate of denominator
−i×i(4ix−ix2−3i)i
Simplify the expression
−i×ii(4ix−ix2−3i)
Simplify the expression
More Steps

Evaluate
i×i
Multiply
i2
Use i2=−1 to transform the expression
1×(−1)
Calculate
−1
−−1i(4ix−ix2−3i)
Divide the terms
i(4ix−ix2−3i)
Apply the distributive property
i×4ix−i×ix2−i×3i
Multiply the numbers
More Steps

Evaluate
i×4i
Multiply
4i2
Use i2=−1 to transform the expression
4(−1)
Calculate
−4
−4x−i×ix2−i×3i
Multiply the numbers
More Steps

Evaluate
i×i
Multiply
i2
Use i2=−1 to transform the expression
1×(−1)
Calculate
−1
−4x−(−x2)−i×3i
Multiply the numbers
More Steps

Evaluate
i×3i
Multiply
3i2
Use i2=−1 to transform the expression
3(−1)
Calculate
−3
−4x−(−x2)−(−3)
Solution
−4x+x2+3
Show Solution

Find the roots
x1=1,x2=3
Evaluate
(2i−3i)1x(4−x)i−3i
To find the roots of the expression,set the expression equal to 0
(2i−3i)1x(4−x)i−3i=0
Subtract the numbers
More Steps

Simplify
2i−3i
Collect like terms
(2−3)i
Calculate
−i
(−i)1x(4−x)i−3i=0
Remove the parentheses
−i1x(4−x)i−3i=0
Use the commutative property to reorder the terms
−i1ix(4−x)−3i=0
Expand the expression
More Steps

Simplify
ix(4−x)−3i
Expand the expression
More Steps

Evaluate
ix(4−x)
Apply the distributive property
ix×4−ix×x
Multiply the numbers
4ix−ix×x
Multiply the terms
4ix−ix2
4ix−ix2−3i
−i14ix−ix2−3i=0
Divide the terms
−i4ix−ix2−3i=0
Divide the terms
More Steps

Evaluate
−i4ix−ix2−3i
Use b−a=−ba=−ba to rewrite the fraction
−i4ix−ix2−3i
Multiply numerator and denominator by conjugate of denominator
−i×i(4ix−ix2−3i)i
Simplify the expression
−i×ii(4ix−ix2−3i)
Simplify the expression
More Steps

Evaluate
i×i
Multiply
i2
Use i2=−1 to transform the expression
1×(−1)
Calculate
−1
−−1i(4ix−ix2−3i)
Divide the terms
i(4ix−ix2−3i)
i(4ix−ix2−3i)=0
Expand the expression
More Steps

Evaluate
i(4ix−ix2−3i)
Apply the distributive property
i×4ix−i×ix2−i×3i
Multiply the numbers
More Steps

Evaluate
i×4i
Multiply
4i2
Use i2=−1 to transform the expression
4(−1)
Calculate
−4
−4x−i×ix2−i×3i
Multiply the numbers
More Steps

Evaluate
i×i
Multiply
i2
Use i2=−1 to transform the expression
1×(−1)
Calculate
−1
−4x−(−x2)−i×3i
Multiply the numbers
More Steps

Evaluate
i×3i
Multiply
3i2
Use i2=−1 to transform the expression
3(−1)
Calculate
−3
−4x−(−x2)−(−3)
If a negative sign or a subtraction symbol appears outside parentheses, remove the parentheses and change the sign of every term within the parentheses
−4x+x2+3
−4x+x2+3=0
Factor the expression
More Steps

Evaluate
−4x+x2+3
Reorder the terms
x2−4x+3
Rewrite the expression
x2+(−1−3)x+3
Calculate
x2−x−3x+3
Rewrite the expression
x×x−x−3x+3
Factor out x from the expression
x(x−1)−3x+3
Factor out −3 from the expression
x(x−1)−3(x−1)
Factor out x−1 from the expression
(x−3)(x−1)
(x−3)(x−1)=0
When the product of factors equals 0,at least one factor is 0
x−3=0x−1=0
Solve the equation for x
More Steps

Evaluate
x−3=0
Move the constant to the right-hand side and change its sign
x=0+3
Removing 0 doesn't change the value,so remove it from the expression
x=3
x=3x−1=0
Solve the equation for x
More Steps

Evaluate
x−1=0
Move the constant to the right-hand side and change its sign
x=0+1
Removing 0 doesn't change the value,so remove it from the expression
x=1
x=3x=1
Solution
x1=1,x2=3
Show Solution
